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Abstract 

Cloud computing platforms are becoming increasingly popular for 
e-commerce applications that can be scaled on-demand in a very 
cost effective way. Dynamic provisioning is used to autonomously 
add capacity in multi-tier cloud-based applications that see 
workload increases. While many solutions exist to provision tiers 
with little or no state in applications, the database tier remains 
problematic for dynamic provisioning due to the need to replicate 
its large disk state. 

In this paper, we explore virtual machine (VM) cloning 
techniques to spawn database replicas and address the challenges 
of provisioning shared-nothing replicated databases in the cloud. 
We argue that being able to determine state replication time is 
crucial for provisioning databases and show that VM cloning 
provides this property. We propose Dolly, a database provisioning 
system based on VM cloning and cost models to adapt the 
provisioning policy to the cloud infrastructure specifics and 
application requirements. We present an implementation of Dolly 
in a commercial-grade replication middleware and evaluate 
database provisioning strategies for a TPC-W workload on a 
private cloud and on Amazon EC2. By being aware of VM-based 
state replication cost, Dolly can solve the challenge of automated 
provisioning for replicated databases on cloud platforms. 

Categories and Subject Descriptors D.2.9 [Software 
Engineering]: Management. 

General Terms Algorithms, Management, Measurement, 
Performance, Design, Experimentation. 

Keywords Database, Autonomic Provisioning, Virtualization. 

1. Introduction 

Online applications have become popular in a variety of domains 
such as e-retail, banking, finance, news, and social networking. 
Typically such web-based applications are hosted in data-centers 
or on cloud computing platforms, which provide storage and 
computing resources to these applications. Numerous studies have 
shown that the workloads seen by these web-based cloud 

applications are highly dynamic and exhibit variations at different 
time-scales [21], [22]. For instance, an application may see a 
rapid increase in its popularity, causing its workload to grow 
sharply over a period of days or weeks. At shorter time-scales, a 
flash crowd can cause the application workload to surge within 
minutes. Applications can also see seasonal trends such as higher 
workloads during particular periods, e.g., during Black Friday, 
marketing campaigns, or a new product launch.  

One possible approach for handling workload fluctuations is to 
employ dynamic provisioning of server capacity. Dynamic 
provisioning involves increasing or decreasing the number of 
servers (and server capacity) allocated to an application in 
response to workload changes. Dynamic provisioning is especially 
well-suited to web-based cloud applications for two reasons. First, 
it is often difficult to estimate the peak workload of an Internet 
application, making it challenging to a priori provision for the 
peak demand.  Second, today’s cloud platforms support on-
demand allocation of servers and employ a pay-as-you-go service 
model. These features are attractive from an application provider’s 
perspective, since servers can be requested only when a workload 
spike arrives or is anticipated, and charging is based only on the 
duration of the workload surge. Cloud platforms employ 
virtualization to support these features—upon a customer request 
for a new (virtual) server, a new virtual machine (VM) is created 
on a physical server with idle capacity, and the specified virtual 
disk image is copied to the server, upon which the server is ready 
for use. In fact, cloud platforms such as Amazon’s EC2 platform 
already support dynamic provisioning (aka “auto scaling”) where 
such VMs are automatically started when a threshold on a user-
specified metric such as CPU utilization is exceeded in the current 
application [1]. 

Much of the prior work on dynamic provisioning [20], [21], [22], 
[4] has assumed that web applications have a multi-tier 
architecture and focus on dynamic provisioning of the front web 
tier or the middle application tier. Provisioning of these front and 
middle tiers is simple since these tiers have little or no application 
state and provisioning merely involves dynamic startup (or 
shutdown) of VMs in response to workload fluctuations. This 
prior work assumes that the backend database tier, where much of 
the application state is stored, is over-provisioned and thus does 
not require dynamic provisioning. However, in scenarios where 
the database tier is the bottleneck (e.g., due to compute-intensive 
query workloads), this simplifying assumption has meant that our 
inability to a priori estimate the peak workload for Internet 
applications will cause the database tier to become overloaded and 
drop user requests. Further it prevents the web application from 
fully exploiting the benefits of the pay-as-you-go and on-demand 
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server allocation in the cloud for the backend tier. Dynamic 
provisioning of the back-end database tier has not been 
considered in the prior literature since it is harder to implement—
replication and synchronization of the associated disk state of the 
database needs to be handled, in addition to the ‘simpler’ problem 
of starting up new database VM replicas. 

In this paper, we consider the problem of dynamic provisioning of 
the database tier of online web applications. We use virtualization 
as a key building block of our dynamic provisioning system, in 
particular by leveraging VM snapshots and cloning as the basis 
for replicating database state in a platform-independent manner. 
In addition, we devise intelligent state replication strategies to 
reduce the latency of starting up new database replicas in 
virtualized public and private clouds. 

1.1 Why is database provisioning hard? 

Dynamic provisioning of server capacity typically involves two 
problems: when to trigger a capacity increase (or decrease), and 
how to achieve the desired capacity addition or reduction.  Both 
the “when” and the “how” questions are simpler in case of the 
web and application tiers than the database tier.  

Typically the decision of when to trigger provisioning is made in a 
lazy fashion for the web and the application tiers—upon an actual 
significant workload change, or an anticipation of one in the near 
future. Such lazy triggers are appropriate for these tiers since 
front-end provisioning schemes assume that new capacity can be 
added immediately whenever needed and that the only latency is 
that incurred for VM startup.  In contrast, provisioning of a new 
database replica involves (i) extracting database content from an 
existing replica, if not already available, and (ii) copying and 
restoring that content on a new replica. These operations can take 
minutes or hours depending on the database size.  

In fact, traditional “just-in-time” cloud provisioning techniques, 
including Amazon Auto Scaling [1], are similarly based on lazy 
triggers and/or thresholds and do not take into account the time to 
replicate the database state. If this state replication and 
synchronization overhead is ignored, the newly provisioned 
capacity comes online far too late to handle the workload increase 
and the capacity requirements will not be met in a timely fashion. 

Similarly the “how” to achieve the desired capacity increase must 
be handled differently in case of dynamic database provisioning. 
Typically this part involves (i) a capacity determination model to 
estimate how many replicas to provision for a given workload, 
and (ii) the actual system steps necessary in starting up and 
configuring those replicas for use. Capacity determination models 
predict the future workload using historical data or dynamic 
predictors [11] and then use queuing techniques to estimate the 
number of replicas needed to service the predicted workload [9]. 
This aspect of provisioning is similar for both the front-end web 
and the back-end database tier. In fact, one of the few papers to 
address dynamic provisioning of the database tier [8] proposed an 
analytical model for databases to determine capacity needed to 
service a given workload. However, this work did not address the 
important systems issues of “when” to trigger provisioning based 
on state replication overheads, nor did it address the many system 
challenges involved in dynamically starting up database replicas.  
Specifically, in database provisioning, even after a VM replica 
starts up, there is an additional overhead of synchronizing the 

state of the new replica with the current state of all other replicas 
to preserve data integrity. No such overheads are incurred when 
provisioning “stateless” web and application tier replicas. 

Thus, database provisioning differs significantly from traditional 
web server provisioning because databases are stateful and their 
state can be very large (and this state must be replicated before a 
new database replica can be spawned). To provision database 
replicas in a timely fashion, it is necessary to know how much 
time will be required to replicate/synchronize this disk state and 
bring the replicas online. These times vary greatly with the 
database size, schema complexity, backup/restore tool options, 
database artifacts (e.g., storage engine configuration). Moreover, 
there are many tradeoffs on how and when to snapshot the 
database state to minimize replica resynchronization time. It is 
therefore non-trivial to estimate the exact time needed to spawn a 
new replica.  

1.2 Research Contributions 

In this paper, we present Dolly1, a system for dynamically 
provisioning database replicas in cloud platforms. Dolly is 
database platform-agnostic and uses virtualization-based 
replication mechanisms for efficiently spawning database replicas.  

The key insight in Dolly is to intelligently use VM snapshots and 
cloning as the basis for dynamic database provisioning. In Dolly, 
each database replica runs in a separate virtual machine. Instead 
of relying on the traditional database mechanisms to create a new 
replica, Dolly clones the entire virtual machine (VM) of an 
existing replica, including the operating environment, the 
database engine with all its configuration, settings and the 
database itself. The cloned VM is started on a new physical 
server, resulting in a new replica, which then synchronizes state 
with other replicas prior to processing user requests. 

Our work on Dolly has led to the following contributions: 

• When to provision: Dolly takes the long latency of spawning 
database replicas into account when triggering “eager” 
provisioning decisions. To do so, Dolly incorporates a model 
to estimate the latency to spawn a replica, based on the VM 
snapshot size and the database resynchronization latency, 
and uses this model to trigger the replica spawning process 
well in advance of the anticipated workload increase.  

• How to provision: Dolly incorporates an intelligent 
scheduling technique that can determine whether it is 
cheaper to take a new VM snapshot or use an older snapshot 
when spawning a new replica. In addition, the technique can 
proactively trigger VM snapshots to reduce the future latency 
of spawning database replicas. These mechanisms are 
implemented in a new provisioning algorithm, with user-
defined cost functions to characterize database provisioning 
policies on cloud platforms. This allows the system 
administrator to tune the provisioning decisions to optimize 
resource usage of her cloud infrastructure. 

• Prototype implementation: We have developed a prototype 
of Dolly using Sequoia [16], a commercial-grade open-
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source database clustering middleware, and have combined it 
with the OpenNebula [14] cloud manager to address 
provisioning in both private and public clouds. We 
demonstrate the efficacy of Dolly in provisioning Mysql-
based database tiers. 

• Evaluation on public and private clouds: We conduct an 
experimental evaluation of Dolly on Amazon’s EC2 public 
cloud and on a laboratory-based Xen private cloud. Our 
experiments with a TPC-W [19] e-commerce workload show 
the ability of Dolly to properly schedule provisioning 
decisions to meet capacity requirements in a timely fashion 
while optimizing resource usage in private clouds and 
minimizing cost in public clouds. 

The remainder of this paper is organized as follows. Section 2 
introduces the necessary background on database replication and 
replica spawning. Section 3 discusses the core techniques for 
database provisioning in the cloud and when to provision, while 
section 4 addresses how to provision. Section 5 presents Dolly’s 
implementation. We perform an experimental evaluation on 
private and public clouds in Section 6. Finally, Section 7 
discusses related work before concluding in Section 8. 

2. Background 

In this section, we present background on virtualized cloud 
platforms and database replication and also formulate the problem 
of dynamic database provisioning.  

2.1 Virtualized Cloud Platforms 

Our work assumes a virtualized cloud platform that runs 
distributed web-based applications. The cloud platform is 
essentially a data center that provides compute and storage 
resource to its applications. Each physical server in the data center 
is assumed to run a virtual machine monitor (aka hypervisor) and 
one or more virtual machines that encapsulate application 
components. The cloud platform, whether public or private, is 
assumed to support on-demand allocation of virtual machines—
applications can request one or more virtual machines at any time, 
upon which the requested VMs are created, placed on to physical 
servers with idle capacity and started up. We assume that 
application components are preconfigured as virtual disk images 
that are available to the cloud platform, enabling automated VM 
allocation and startup. Such on-demand VM allocation is a 
prerequisite for our dynamic provisioning techniques. Our work 
targets both public cloud platforms such as Amazon EC2 as well 
as private Linux-based clouds constructed using Xen/KVM 
virtualization platforms. In case of public clouds, where servers 
and storage is charged based on a pay-as-you-use model, we 
assume that the pricing model is known a priori and can be taken 
into account when making provisioning decisions. 

2.2 Problem Formulation 

We assume that cloud platforms run distributed web applications. 
Each application is assumed to employ a multi-tier architecture 
consisting of a front-end web tier, a middle application (e.g., 
J2EE) tier, and a backend database tier. Each tier is assumed to be 
dynamically replicable. That is, each tier is assumed to comprise 
one or more VM replicas, and it is assumed that the number of 
replicas at each tier can be varied based on changing workload 
demands at that tier. We assume that each tier also assumes a 

dispatcher/load-balancer that is responsible for distributing 
requests to various replicas.  

Our work focuses on the database tier. In contrast to prior work 
that has typically assumed a static number of (over-provisioned) 
replicas at the database tier, we assume that this tier can also be 
dynamically provisioned like the other tiers. The dynamic 
provisioning problem for the database tier can then be stated as 
two sub-tasks: (i) when to trigger a capacity change based on 
current and future workload trends, and (ii) how to startup or 
shutdown the desired number of VM replicas. As discussed 
above, both tasks raise new challenges when dynamically 
provisioning databases. Our goal is to design a database 
provisioning platform that (i) given future workload forecasts, 
will estimate the time to start up a new database replica and will 
use this latency to trigger a provisioning change sufficiently in 
advance of the anticipated change, and (ii) uses an intelligent 
algorithm that takes user-specified cost functions to optimize the 
overheads of starting up (or terminating) the desired number of 
replicas. 

2.3 Database Replication 

Before presenting our provisioning technique, we present brief 
background on database replication. Dynamic database 
provisioning assumes that the underlying database platform is 
replicable and clusterable. In general, there are two primary 
architectures for implementing database replication: shared-disk 
and shared-nothing. In the shared-disk architecture, there is a 
single copy of the data on a shared disk (SAN or NAS) that is 
accessed by all replicas. Typically shared-disk database platforms 
such as Oracle RAC [13] require specific hardware (in the form of 
shared disk systems) that may not be available in commodity 
cloud platforms.  

In the shared-nothing architecture, there are multiple database 
server processes that run on different machines, and each replica 
has a copy of the database content on its local disk. Consistency is 
maintained across replicas using LAN communications. Dolly 
currently assumes a shared-nothing architecture since they are 
well suited for today’s cloud platforms and also commonly used 
in multi-tier web applications. 

Within shared-nothing systems, there are two main replication 
strategies: master-slave and multi-master. In master-slave, updates 
are sent to a single master node and lazily replicated to slave 
nodes. Data on slave nodes might be stale and it is the 
responsibility of the application to check for data freshness when 
accessing a slave node. Multi-master replication enforces a 
serializable execution order of transactions between all replicas so 
that each of them applies update transactions in the same order. 
This way, any replica can serve any read or write request.  

Further, replication can be implemented inside the database 
engine, also known as in-core replication, or externally to the 
database, commonly called middleware-based replication. The 
technique to add a new replica is similar in both environments. In 
both architectures, transactions are balanced among the replicas 
and are stored in a transactional log (also called recovery log). 
The middleware design usually keeps a separate transactional log 
for replication, whereas the in-core approach stores the 
information in each database’s replica transactional log.  
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Figure 1 shows the steps to spawn a replica in a middleware-based 
replication environment. First, a command to add a new replica is 
issued from the management console to the replication 
middleware. A checkpoint is then created in the transactional log 
(step 2) and a replica is temporarily taken out of the cluster to take 
a snapshot (also called database dump) of the database content 
(step 3 via DB2). As soon as the snapshot has been taken, this 
replica is resynchronized by replaying the transactions written in 
the transactional log since the checkpoint (step 4) and it rejoins 
the cluster. A new replica is then started on a separate node, and 
the snapshot is seeded to this new replica using a restore operation 
(step 5). Finally, the updates that have occurred since the snapshot 
was taken are replayed from the transactional log (step 6) to 
resynchronize the new replica and bring it up-to-date with all 
other replicas in the system. 

 

Figure 1. Procedure to spawn a replica. 

Conceptually, the above steps for replica creation can be classified 
into three key phases: (i) the backup phase, where database 
content is extracted from an existing replica and moved to a new 
node, (ii) the restore phase, where a new replica is seeded with 
this snapshot, and (iii) the replay phase, where the replica is 
resynchronized with others by replaying new updates from the 
transactional log.  

As we will see in the Dolly design, the use of virtualization 
simplifies these steps. Dolly employs VM snapshots to implement 
the backup phase and uses VM cloning to restore the snapshot 
onto a new replica. By doing so, Dolly is database-platform 
agnostic, since it relies on the virtualization platform, rather than 
native platform-specific tools, to implement provisioning via 
backup/restore. VM cloning is independent of the database 
schema complexity and eliminates common backup issues of 
database specific extensions and configurations [7]. 

Further, the Dolly design is general and can accommodate both 
master-slave and multi-master shared-nothing architectures; our 
current implementation, however, is based on a multi-master 
middleware-based replication and is implemented on Sequoia, a 
commercial-grade database clustering middleware [16]. 

3. Dolly: When to Provision 

In this section, we first describe the high-level approach used in 
Dolly to provision database replicas via VM snapshot and cloning 
and then present a model to estimate the latency of these 
operations when provisioning a new replica. 

3.1 Replica Spawning via VM Cloning 

Dolly uses the ability to make VM snapshots and clone VMs to 
efficiently replicate database state and start new replicas. Figure 2 
illustrates the high-level approach to spawn 2 new replicas in a 
private cloud. First, the virtual machine (VM) running a database 
replica is stopped on machine 1 and cloned to be stored on a 
backup server (machine B). Two new replicas are then spawned 
by cloning the VM from the backup server and starting these new 
VMs. Dolly minimizes the downtime of the existing replica that is 
being cloned by exploiting VM or file-system-level snapshots. A 
file-system or VM-level snapshot [5] is a point-in-time copy of 
the virtual disk image; snapshots can be made efficiently, after 
which the original VM replica can be resumed immediately and 
the snapshot image can be copied to the other machine(s) in the 
background.  
 

 

Figure 2. Replica spawning in a private cloud. 

Figure 3 shows how spawning 2 replicas works in a public cloud 
such as Amazon EC2 that provides a Network Attached Storage 
(NAS) service called Amazon Elastic Block Storage (or EBS). 
Note that EBS volumes cannot be shared by multiple instances 
and are therefore different from a SAN or shared disk approach.  

 

Figure 3. Replica spawning in a public cloud. 

The VM disk image is stored on an EBS volume and the VM 
boots from this image. When the VM is stopped, the volume is 
detached from its running server. EBS allows snapshots of the 
volume to be created; doing so asynchronously replicates the 
volume. The volume snapshot must then be registered in EC2 in 
order to create new VMs. This is equivalent to storing the image 
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to a backup server in a private cloud. When a new VM is created 
from an EBS snapshot, a clone of that volume is created and 
dedicated to the newly started instance. In our case, we assume 
that the database server disk state (configuration file and data 
within the database) are stored on the EBS volume; thus 
snapshots and booting a new VM from the snapshot is an effective 
mechanism to replicate the shared-nothing database content and 
start up a new database replica. 

3.2 Determining replica spawning time 

Dolly must accurately estimate the overheads of the above VM 
snapshot and cloning operations in order to intelligently trigger 
the spawning of new replica(s). We now present a simple model 
to estimate this latency. 

In general, there is a tradeoff between the time to snapshot/clone a 
database/VM, the size of the transactional log and the amount of 
update transactions in the workload. For example, a new replica 
can be seeded with an old snapshot (e.g., a snapshot that was 
taken to seed a different replica), which eliminates the backup 
phase overhead. However, use of an older snapshot forces the 
system to keep a larger transactional log and also increases the 
time to replay updates from this log during the replay phase. On 
the other hand, taking a new snapshot for each new replica may 
incur significant overheads during the backup phase, especially if 
the database is large. By analyzing the overheads of these 
operations, Dolly can choose the option with the lower latency. 

The replica spawning overhead can be analyzed using the five 
variables defined in Table 1. 

Table 1. Replica spawning time variables. 

bi backup time to generate VM snapshot i 

ri time to restore/clone snapshot i on a new replica 

replayi time to replay update transactions logged since 
snapshot i 

wt average update transaction throughput observed at the 
time the new replica spawning command is issued 

wmax maximum update transaction throughput of the replica 

 

 

Figure 4. Decomposition of the replica spawning time with a new 
snapshot. 

When no snapshot is available, it is necessary to perform a new 
backup and restore, yielding an overhead of (bi+ri) as shown on 
Figure 4. The replay phase then replays all updates that have 
occurred during this period. We can estimate the replay time by 
observing the current rate of update transactions and assume that 
it will remain a valid approximation during the replay time. The 
new replica will be able to replay the requests at wmax speed since 
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Replica spawning time when 
no snapshot is available 

( ) max

max

i i

t

w
b r

w w
+

−

 

Replica spawning time from an 
existing snapshot i 

( ) max

max

i i

t

w
r replay

w w
+

−

 

 

We find the equations in Table 2 and conclude that: it is faster to 
take a new snapshot j to spawn a new replica if bj+rj < ri+replayi. 
Any dynamic provisioning technique for replicating the database 
tier of the application needs to consider this key tradeoff. The VM 
cloning mechanism used by Dolly provides a predictable 
backup/restore time independent of the database size and schema 
complexity as shown in Table 8. Cloning only depends on the VM 
image size that is known and its snapshotting time can be easily 
predicted. replayi can be accurately predicted by recording the 
execution times of each update transaction and adding them up.  

Since replayi can be accurately predicted, having a constant bj  
and rj, that are independent of the database size or complexity, 
allows Dolly to decide if bj<replayi in which case it is faster to 
take a new snapshot than to use an existing one to spawn a new 
replica. 

4. Dolly: How to Provision 

Our Dolly provisioning system has four main components: 
capacity provisioning engine, snapshot scheduler, paused pool 
cleaner and actuator. Typically, the provisioning engine will 
employ a workload predictor (Section 4.1) that observes the 
behavior of the system. To provision a certain capacity by a given 
deadline, it is necessary to schedule capacity provisioning actions 
according to the time it takes to replicate the database state 
(Section 4.2). As replicas have to be spawned from a database 
snapshot, the snapshot scheduler decides when new database 
snapshots (VM clones) have to be taken (Section 4.3). Some 
stopped or paused VMs become obsolete over time and need to be 
purged by the paused pool cleaner (Section 4.4). The actuator 
orchestrates and executes the orders of all the other components. 

Whenever new workload predictions become available, the 
capacity provisioning algorithm is invoked to compute a new 
schedule to meet capacity demands. Then the snapshot scheduler 
runs to check if new snapshots could be generated (possibly from 
paused VMs) to make future spawning operations cheaper. If new 
VM snapshots are generated, we re-run the capacity provisioning 
algorithm to generate a new schedule. In the end, we obtain a 
schedule of snapshot and capacity provisioning actions (adding, 
pausing, resuming replicas) that are executed by the actuator. 
Dolly also regularly triggers the paused pool cleaner to free old 
paused VMs and snapshots that are no longer needed. A more 
detailed description of the algorithms is available in [6]. 
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To adapt provisioning policies to the target cloud platform, Dolly 
uses cost functions to allow the administrator to define which 
option is best if multiple strategies are available. The cost can 
model any metric like time, resource usage or actual resource cost 
as we will show in the next sections. Table 3 lists the seven cost 
functions used by Dolly and the definitions for each. 

Table 3. Cloud platform specific cost functions used by Dolly. 

Cost function name Definition 
pause_cost(VM, t) cost of pausing VM at time t 
spawn_cost(s, t, d) cost to spawn a replica from snapshot s 

at time t to meet deadline d 
spawn_cost(VM, t, d) cost to spawn a replica from a paused 

VM at time t to meet deadline d 
running_cost(VM,t1,t2) cost to run a VM from time t1 to time t2 
pause_resume_cost(VM, 

t1, t2) 
cost to pause a VM at time t1 and 

resume it at time t2 
backup_paused_cost(VM) cost to backup a paused VM 
backup_live_cost(VM, t) cost to backup an active VM at time t 

Table 4 summarizes the variables used to measure the time used 
by the different operations used by the algorithms described in 
this section. 

Table 4. Variables used to measure replica spawning operations. 

rr Time to restore and replay from the latest snapshot 

br Time to spawn from a new snapshot (backup+restore) 

iVMrs  Time to resume paused VM i 

psr Time to pause/snapshot/resume a VM 

pw Prediction window 

 

Figure 5. Example of a capacity and write workload prediction 
over time. Dolly provision replicas based on the forecast available 

in the prediction window. 

4.1 Capacity and workload predictors 

Previous work has established how to predict replicated database 
capacity based on a standalone node measurement [9]. This 
allows forecasting performance scalability and identifying 
potential bottlenecks. Many models exist for workload prediction 
[11], [20]. Dolly does not assume any particular workload 
predictor or capacity model; it can use any existing approach and 
can be a platform to test new predictors or improve existing ones. 

Depending on the capacity and workload predictors used, the 
forecast will have a limited visibility in the future. Web sites with 
stable workloads might have accurate static weekly predictions 
possibly adjusted by administrators for seasonal peaks. More 

dynamically changing workloads can be less predictable and only 
sketch the demand for the next hour or so. We call prediction 
window the time between now and the latest time in the future for 
which the load and capacity demand can be predicted. 

Figure 5 shows an example of capacity demand and write 
throughput of a replicated database. The prediction window slides 
as time goes on. Prediction windows are not necessarily of a fixed 
size since a predictor can dynamically change the technique it 
uses to forecast the load thus increasing or decreasing the 
prediction window size. Dolly has to schedule provisioning 
decisions for deadlines d1, d2 and d3, where the capacity demand 
changes in the prediction window. 

4.2 Provisioning replicas 

The provisioning algorithm scans the prediction window and 
looks for deadlines where changes in workload require additional 
capacity (such as time d1 and d3 on Figure 5) or less capacity 
(such as time d2 on Figure 5). The algorithm handles all deadlines 
in sequence. In Figure 5, d1 is handled first. Once a schedule has 
been found for d1, it moves to d2 and so on. The algorithm works 
in two phases for each deadline: 1) list all possible options for 
replica spawning or releasing and 2) sort these options according 
to a cost function. 

4.2.1 Decreasing capacity 

When the capacity requirements decrease, replicas that are no 
longer needed are paused. The replication engine keeps track of 
the state of each stopped virtual machine replica so that it knows 
exactly what has to be replayed when the VM is resumed. A 
similar state is saved in the slave nodes for master/slave 
replication. 

When a VM is stopped in a private cloud, its image still resides 
on the machine’s local disk. As we might want to resume that 
image later, we do not return the machine to the free server pool 
but it is put it in a special paused server pool. The machine can be 
shutdown as long as it is in the paused pool. A machine can be 
reclaimed from the paused server pool by the private cloud 
infrastructure if the free pool is empty and additional capacity is 
required for other databases or tiers. In a public cloud like EC2, 
the computing instance is simply detached from the storage and 
can be re-attached later to any other instance. 

The platform specific cost function, pause_cost(VM, d) 
determines the cost of pausing VM at time d. For example, in EC2 
where server time is billed by the hour, if at time d VM1 has just 
started a new billed hour and VM2 is toward the end of its billed 
hour, we would have pause_cost(VM1, d)>pause_cost(VM2, d). 
On a private cloud, the administrator might prefer to switch off 
the hottest machines to improve cooling. If the capacity has to be 
reduced by r replicas at time d, the algorithm schedules the r 
replicas that have the lowest pause_cost for pausing. 
 

4.2.2 Increasing capacity 

When an increase in capacity is predicted at deadline d, the 
algorithm explores all replica spawning options from snapshots 
and paused VMs. 

In our system, the replicated database always has at least one 
snapshot available for creating new replicas. The first snapshot is 
created when initializing the system as shown on Figure 5, and 
snapshots are updated regularly when needed, as will be explained 
in section 4.3. When new replicas are spawned from a snapshot, 

time 

# of 
replicas
needed 

prediction window 

backup 

restore 

now 

init 

time 

past 

write 
txput 

wmax 

d1 d2 d3 

unpredicted 

future 

snapshot1 snapshot2 
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we can predict the time it takes to bring the replica online using 
the formula described in section 3.2.  

Dolly looks at all available snapshots that can spawn replicas in 
time to meet deadline d, as well as all paused VMs that can be 
resumed and resynchronized in time. Each option has its own cost 
defined by the spawn_cost function. For example, on a private 
cloud, options using the latest start times allow unused nodes to 
remain switched off longer and save energy. On a public cloud 
such as EC2, the cost can be defined by the price the user is going 
to pay for the compute hours of the instance, the IOs on EBS and 
the monthly cost for data storage.  

The cheapest options are selected to be executed. Note that if 
there are not enough options to provision all replicas, this means 
that it is not possible to spawn all replicas in time for the deadline 
given the current workload. We address this scenario in the next 
section. 

4.2.3 Admission control 

If a capacity deadline cannot be met in time with the current 
forecast, it is possible to perform admission control on the system 
in multiple ways. Note that this scenario can only happen if the 
predictor drastically changes its predictions for the current 
prediction window (such as an unpredicted flash crowd). 

First we assume that no writes will update the system from now 
on and compute the time it takes to restore and replay from the 
latest snapshot (rr), to take a new snapshot and spawn a replica 
from it (br=backup+restore) or resume from paused VMs (

iVMrs ). 

If we find that ( , , , )
i jVM VMnow min rr br rs rs d+ ≤ , this implies that 

there is enough time to create replicas but the write throughput is 
too high or too close to wmax for replicas to catch up in time. 
Doing admission control on the write throughput wt can be used 
to meet the deadline as long as:  

max

max

( , , , ).
i jVM VM

t

min rr br rs rs w
w w

d now
≤ −

−
 

Note that doing admission control on writes (write throttling), 
means that update transactions are going to be delayed. 
Depending on timeout settings, this might translate into 
transactions being aborted. The minimum acceptable write 
throughput can be set by the administrator.  

If replicas cannot be spawned in time even with write throttling, it 
is necessary to perform admission control on the incoming 
workload to prevent the system from crashing due to overload. 
Admission control can be performed by the replication engine by 
allowing only a fixed number of transactions in the system at any 
given time. It can also be achieved at another tier in front of the 
database (e.g. web tier admission control). A workload matching 
the current capacity has to be maintained until additional capacity 
becomes available at time: 

max

max

( , , , )
i jVM VM

t

w
d now min rr br rs rs

w w
− +

−

 

The administrator can set a minimum acceptable wt and let Dolly 
perform admission control and schedule spawning operations 
accordingly. 

4.3 Scheduling new database snapshots 

In addition to provisioning new replicas or pausing existing ones, 
Dolly must deal with the problem of periodically creating new 

database snapshots by cloning VMs. A newer snapshot reduces 
the cost of spawning a new replica in the future (since it has a 
more recent version of the database and will incur a lower 
synchronization overhead). However, creating a snapshot incurs 
an overhead, and Dolly must intelligently schedule their creation 
to balance the cost and the benefit. 

Two problems have to be solved to schedule new database 
snapshots: how and when. How can either be from an already 
paused VM or by pausing an active VM for the time of the 
snapshot (see section 4.3.1). A new snapshot must be ready when 
the time to restore and replay from the previously available 
snapshot is greater than the prediction window (see section 4.3.2). 

4.3.1 How to snapshot? 

An opportunistic method to create a new snapshot is to clone 
VMs that have been paused. While a paused VM only captures 
the database state until the time it was paused, it might still be a 
significant improvement over the last snapshot available.  

The only other option requires taking an existing replica offline 
for the time of the pause/snapshot/resume (psr) operation and 
replaying of updates that happened since the VM was paused. 
This means that the capacity of the system is going to be reduced 

by 1 replica from tbackup to ( ) max

max
backupbackup t

t

w
t psr replay

w w
+ +

−
. 

If the workload prediction does not allow a replica to be 
temporarily disabled during that time interval, an additional 
replica has to be provisioned at time tbackup to allow taking a new 
snapshot. This new deadline can be added to the current capacity 
prediction and the capacity provisioning algorithm described in 
section 4.2 has to be re-executed to provision this additional 
replica in time. 

4.3.2 When to snapshot? 

If we want to provision additional replicas in time, the time to 
restore and replay from the latest available snapshot should never 
exceed the prediction window. Otherwise, when the predictor 
forecasts a new capacity demand increase at the end of the 
prediction window, there would not be enough time to spawn new 
replicas. This means that a new snapshot must be ready to be fully 
restored at time tswitch defined by: 

,i backup switchi
backupr replay pw+ =  

where pw is the prediction window and  

To make sure that additional replicas can be provisioned at tswitch 
using the new snapshot, the backup operation must be started 
prior to time 

1ibackupt
+

so that there is enough time to backup, restore 

and replay a new replica at time tswitch. This translates to: 

1 1 , 11i i backup switch ii
backup backup switch backupb r replay t t

+ + ++

+ + ≤ −  

To guarantee that a new snapshot can be ready in time, the 
prediction window must be long enough so that: 

1 1 1 ,1i i i backup switchi
switch backup backup backuppw t t b r replay

+ + + +

≥ − ≥ + +  

If the prediction window is too short or write throughput is too 
high, admission control can be used to make sure that new 
snapshots can be prepared in time within the prediction window. 

The algorithm then scans the prediction window and look at each 
deadline where new replicas have to spawned (adding capacity 

,

max

switch

backup switchi

backupi

t

t

t t

w
replay

w=

= ∑
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only). For each deadline, it calculates the cost to spawn new 
replicas for 3 strategies: 

1) The cost to spawn replicas from a snapshot given by 
spawn_cost (defined in section 4.2.2) for all snapshots that can be 
restored and replayed by the deadline. 

2) For each paused VM (step 3) that can be snapshotted, restored 
and replayed by the deadline, the cost to take the backup from the 
paused VM is given by the cost function backup_paused_cost to 
which we add the cost of spawning replicas from this backup. 

3) The cost of creating a backup from a live replica is given by the 
backup_live_cost function to which we add the cost of spawning 
replicas from this backup and the eventual cost of bringing a 
replica online if no idle replica is available. 

Next, the algorithm keeps the option that has the minimal cost for 
each deadline and schedules the operations accordingly. If no 
option is available to spawn a replica in time for a given deadline, 
the algorithm computes at what time a snapshot should be taken 
and modifies the capacity requirements to ask for one replica to be 
ready by that time. The capacity provisioning is then invoked to 
provision that replica, eventually using admission control if 
needed. 

The capacity provisioning algorithm is re-run every time new 
snapshots have been scheduled to check if a better replica 
spawning schedule is available. If this is the case, the old schedule 
is replaced by the new schedule. 

4.4 Relinquishing resources 

Over time, some paused VMs become obsolete and are not cost 
effective to be resumed. The same applies to old VM snapshots 
that need to be erased. The paused pool cleaner has the 
responsibility of releasing these resources. It is invoked at regular 
time intervals that can be set by the administrator (from every 
hour, to every day or every week). It scans each paused VM and 
checks the cost of resuming that VM (spawn_cost(VM, now, 
pwend)) and compares it to the cost of spawning a replica from the 
latest available snapshot (spawn_cost(bi, now, pwend)). If the cost 
of resuming the VM is higher, it means that this VM will not be 
used anymore and it can be released. 

A similar approach can be used for snapshots. All snapshots that 
are older than the current latest available snapshot can be 
released. However, the administrator might want to keep multiple 
older backups for recovery purposes. On a public cloud like EC2, 
since storage is paid for on a monthly basis, a better policy may be 
to retain old volumes until the end of the billing cycle. 

4.5 Current limitations 

Dolly assumes that all the components of the cloning operation 
(backup, restore, snapshot…) have a constant time which is 
correct for homogeneous setups with LAN interconnections. This 
might not be the case with heterogeneous resources or resources 
in different EC2 regions or clouds using WAN interconnections. 
The worst case scenario measurement could be taken to ensure 
safe scheduling, but specific optimizations for such environments 
are left to future work. Additional optimizations such as virtual 
machine migration can also be considered in these environments. 

When synchronizing slave nodes in a master/slave setup, the 
synchronization process uses master node resources and 
potentially impacts its performance. We have not currently 

modeled this performance impact but we did not find it noticeable 
in our early experiments. 

5. Dolly Implementation 

We have implemented the concepts of Dolly in the Sequoia 4.0 
[16] database clustering middleware and integrated it with the 
OpenNebula cloud infrastructure manager v1.4 [14]. OpenNebula 
works with both private and public cloud resources and offers a 
single API to manipulate VMs independently of the target 
platform. Figure 6 shows an overview of the integration of Dolly 
with Sequoia and OpenNebula in the context of the TPC-W 
benchmark.  

 

Figure 6. Overview of Dolly integration in Sequoia and 
OpenNebula running the TPC-W benchmark. 

Client applications send SQL requests to the Sequoia controller 
that forwards them to the underlying databases to perform 
replication. The SQL commands of update transactions are 
recorded with their execution time in a transactional log called 
recovery log. The log itself is stored in an embedded database 
running within the Sequoia controller. The recovery log can be 
replayed to synchronize new or failed replicas. Additionally, 
Sequoia has a replica spawning infrastructure with a pluggable 
backuper interface that interacts with the recovery log and allows 
for database specific implementations of backup and restore 
operations. We have implemented a Dolly/OpenNebula backuper 
that interacts with OpenNebula to start/stop and clone/snapshot 
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virtual machines to implement the backup and restore 
functionality. When a new backup is triggered, a pointer to the 
current state of the recovery log is stored with the dump metadata. 
When a restore operation is launched, the dump is first restored 
and dedicated threads then replay the recovery log (i.e. re-execute 
the SQL commands) from the point that was saved in the 
metadata. Updates are applied in a serializable order to bring the 
new replica in a consistent state with other replicas. The time to 
replay is computed by summing the recorded execution time of all 
queries to replay. More information about Sequoia internals and 
its recovery log can be found in the Sequoia documentation [16]. 

Dolly takes predictions directly from the TPC-W load injectors 
that act as oracles with perfect information. A tunable prediction 
window can be used from 1 minute to the entire length of the 
benchmark run. The provisioning actions are directly sent to the 
Sequoia controller through its administration interface. Dolly 
performs admission control directly on the load injectors but it 
would typically do this at the web tier level in a multi-tier setup. 
The write throttling is achieved by interacting with the Sequoia 
scheduler. We have implemented different cost functions to model 
our private cloud platform and the Amazon EC2 public cloud. 

The private cloud cost functions detailed in pseudo-code in Table 
5 optimize the time the resources are used. The longer the 
resources are used, the more power they use and the higher the 
cost. When the algorithm has to decide which VM to pause, it 
selects the hottest machine at that time. 

Table 5. Cost function implementation for our private cloud. 

Cost function name Implementation 
pause_cost(VM, t) return 1/VM->machine->temp 
spawn_cost(s, t, d) return d-t 
spawn_cost(VM, t, d) return d-t 
running_cost(VM,t1,t2) return 1 
pause_resume_cost(VM, 

t1, t2) 
if (t2-t1>VM->pause+VM->resume) 

  return 0 

else return 2 
backup_paused_cost(VM) return backup_time 
backup_live_cost(VM, t) return VM->pause + backup_time 

+ VM->resume 

Table 6 models the cost functions as the real cost the user would 
pay for EC2 resource usage. It includes both the compute time for 
server instances (charged by the hour at the hour$ rate) and the IO 
cost (charged monthly per GB of storage (EBS_storage$) and IOs 
are charged per million (EBS_io$)). EBS snapshots are stored on 
S3 and are charged monthly per GB of storage (S3_storage$). 

Table 6. Cost function implementation for Amazon EC2. 

Cost function name Implementation 
pause_cost(VM, t) return 60-((t-VM->start)%60) 
spawn_cost(s, t, d) comp$=(d-t)/60*hour$ 

io$=EBS_storage$*s->size + 

  EBS_io$* 

  (s->restore_io+s->replay_io) 

return comp$+io$ 
spawn_cost(VM, t, d) comp$=(d-t)/60*hour$ 

io$= EBS_io$* 

  (s->resume_io+s->replay_io) 

return comp$+io$ 
running_cost(VM,t1,t2) (t2-t1)/60*hour$; 
pause_resume_cost(VM, 

t1, t2) 
io$= EBS_io$* 

 (VM->pause_io+VM->resume_io) 

comp$=(60-(VM->stop-VM->start) 

  %60)/60*hour$ 

return io$+ comp$ 

backup_paused_cost(VM) return S3_storage$*s->size 
backup_live_cost(VM, t) return pause_cost(VM, t)$+ 

 S3_storage$*s->size +  

 (VM->stop_io+VM->start_io)* 

   EBS_io$ 

6. Experimental Evaluation 

This section first introduces the cloud platforms used for our 
experiments. We then present our performance evaluation. 

6.1 Cloud Platforms 

We conduct experiments on private and public clouds. We use a 
private cloud composed of a cluster of Pentium 4 2.8GHz 
machines. Each machine is running a CentOS 5.4 Linux 
distribution with a Linux kernel version 2.6.18-128.1.10.el5xen, 
the Xen 3.3 hypervisor, Java runtime version 1.6.0_04-b12and 
MySQL v5.0.45. All machines are interconnected by a Gigabit 
Ethernet network.  

We use Amazon EC2 as our public cloud. EC2 instances are 
created from EBS volumes. We use standard large on-demand 
EC2 instances in our experiments. Each EC2 instance has 
CloudWatch running on it to monitor the number of writes. The 
price of our EC2 instance with CloudWatch is $0.355 per hour. 
The price of an EBS volume is $0.10 per allocated GB of data per 
month. The cost of doing I/O requests to an EBS volume is $0.10 
per million I/O requests. There is a cost of $0.15 per GB per 
month associated with the storage of EBS volume snapshots.  

Table 7. Operation timings in seconds for a TPC-W benchmark 
virtual machine on our private cloud and EC2. 

Operation Private Cloud Public Cloud (EC2) 

start VM 42s 220s 

pause VM 26s 30s 

resume VM 42s 30s 

backup (stop/clone) 150s 320s 

restore (clone/start) 165s 220s 

wmax 149 writes/sec 197 writes/sec 

Avg IOs per write 15 13 
 

We build a 4GB VM image of the TPC-W benchmark for both 
cloud platforms. We report our measurements of the various VM 
management and cloning operations in Table 7. We measure the 
maximum write throughput of a single replica (wmax) obtained by 
running only write transactions of the TPC-W workload on a 
standalone database. The average number of IOs per write 
transaction is calculated by running iostat before and after the 
wmax run. 

6.2 VM Cloning vs Database Backup/Restore 

VM cloning is an alternative mechanism for replicating content 
when compared to the traditional database-specific backup-restore 
mechanism. In this section, we compare the copy overheads of the 
two approaches. 

Table 8 shows the time to copy various databases using the 
database native backup/restore tool (e.g. mysqldump, pg_dump) 
versus VM cloning. The RUBiS benchmark database [3] is tested 
with 3 configurations on MySQL using the InnoDB engine: 
without constraint or index (-c-i), with integrity constraints and 
basic indexes (+c+bi) and with constraints and full text indexes 
(+c+fi). TPC-W and TPC-H [19] databases are stored in a 
PostgreSQL RDBMS. We also experiment with two virtual 
machine image sizes (4 and 16GB) where we store both the 
operating system and the database within its content. 

Indexes significantly increase the database footprint on disk. We 
observe from the RUBiS results that integrity constraints checks 
as well as index building can increase database backup/restore 
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time by a factor of more than 7 for the exact same database 
content. Not only do the database schema and backup tool 
configurations affect timings, different database engines yield 
very different results for databases with a similar size on disk as 
shown on Figure 7. We observe that large or complex databases 
can take more than 1 hour to replicate. 

Table 8. Backup/restore and VM cloning time in seconds for 
various standard benchmark databases. 

Database 
DB size 
on disk 

DB 
Backup 
Restore 

Dolly 
4GB VM 
cloning 

Dolly 
16GB VM 

cloning 

RUBiS –c–i 1022MB 843s 281s 899s 

RUBiS +c+bi 1.4GB 5761s 282s 900s 

RUBiS +c+fi 1.5GB 6017s 280s 900s 

TPC-W 684MB 288s 275s 905s 

TPC-H 1GB 1.8GB 1477s 271s 918s 

TPC-H 10GB 12GB 5573s n/a 911s 

In contrast, VM cloning performs a filesystem level copy without 
interpreting database objects, thus it offers a constant time 
regardless of the database complexity or engine used. The time 
only depends on the VM image size on disk (280s for a 4GB 
image and about 900s for a 16GB image). Consequently, since the 
VM disk size is fixed a priori, VM cloning makes it easy to 
predict database backup/restore time incurred when spawning a 
new replica—a crucial pre-requisite for database provisioning. 
Additionally VM cloning captures the entire OS/database 
configuration and settings preventing any error in reproducing 
these settings on the new replica machine. 

 

Figure 7. Time breakdown for cloning a database with Dolly and 
MySQL backup/restore tools with the MyISAM and InnoDB 
engines using the RUBiS benchmark database with various 

constraints and indices. 

6.3 Provisioning Evaluation 

We experiment with TPC-W, an eCommerce benchmark from the 
Transaction Processing Council [19] that emulates an online 
bookstore. We use the ObjectWeb implementation of the TPC-W 
benchmark [17]. The setup is similar to the one depicted in Figure 
6 with load injectors providing a 2 hour prediction window. The 
web tier (not shown on Figure 6) is statically provisioned with 
enough servers for the length of the experiment.  

We compare the provisioning decisions of Dolly for the private 
and public clouds with traditional provisioning techniques given 
the workload and initial conditions defined in section 6.3.1. 

6.3.1 Workload Description 

We have generated a custom mix of interactions to create the 
workload depicted at the top of Figure 8. We generate a read-only 
request mix by using the TPC-W browsing mix workload and 
removing its few write interactions. We use httperf to create the 
desired number of clients that send these read-only interactions. 
The write interactions are generated using the customer 
registration servlet of TPCW. Another set of httperf clients 
generate these write-only interactions.  

We use the model described in [9] to determine the capacity 
requirements shown in Figure 8. The initial capacity demand at 
t=0 is 4 replicas (middle graph) and the write throughput is 20% 
of the maximum write throughput (bottom graph). A snapshot s0 
is also available at time t0. After 10 minutes the number of 
replicas needed decreases from 4 to 3. We denote this deadline by 
d1. The number of replicas needed decreases further from 3 to 2 at 
d2=20 minutes. The capacity demand increases sharply from 2 to 5 
replicas at d3=80 minutes, then drops to 2 at d4=90 minutes and 
increases up to 6 replicas at d5=100 minutes. The number of 
writes remains constant to 0.2 times the maximum write 
throughput for one hour with a 10 minute read-only workload 
starting at d2. After that hour, the write throughput is 0 until d3 
with a write surge at 50% of the maximum write throughput. The 
write peak continues for 10 minutes and the write throughput 
drops to 0 at d4. 

   

Figure 8. TPC-W workload, predicted capacity requirements and 
write workload. 

6.3.2 Provisioning results 

We compare Dolly’s performance with two traditional 
provisioning techniques: reactive provisioning and 
overprovisioning. These techniques behave similarly on the 
private and public clouds. 

Reactive provisioning does not use any prediction and just reacts 
to the current capacity demand. When reactive provisioning is 
used, database snapshots are generated at fixed time intervals. We 
use intervals of 15 minutes (Reactive15m), 1 hour (Reactive1h) 
and 2 hours (Reactive2h), generating 7, 1 and 0 snapshots 
respectively during the experiment. 

The overprovisioning configuration (Overpro6) uses a constant 
set of 6 nodes. As for reactive provisioning, snapshots are 
generated periodically. We choose to only generate 1 snapshot 
during the experiment. 
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Figure 9. Capacity made available by each provisioning algorithm compared to the required capacity and the total capacity actually used. 

We run Dolly with three prediction windows of 10 minutes, 30 
minutes and 2 hours. Dolly uses the cost functions presented in 
section 5 for the private and public clouds. The performance of 
the different algorithms is summarized in Table 9. The cost for the 
private cloud represents the cumulative machine uptime (6 
machines up for 5 minutes accounts for 30 minutes). The cost for 
the public cloud (Amazon EC2) is the real cost in $USD. The 
second metric used is missing replica minute (MRM) that 
measures capacity underprovisioning (i.e. SLA violations). 1 
MRM corresponds to a missing capacity of 1 replica for 1 minute 
(5 replicas missing for 2 minutes accounts for 10MRM). 

Table 9. Provisioning algorithm performance for private and 
public clouds in terms of cost and missing replica minute (MRM). 

Provisioning 
algorithm 

Private Cloud Public Cloud (EC2) 

Cost (time) MRM Cost ($) MRM 

Reactive15m 381m42s 17.5 18.29 27.2 

Reactive1h 360m30s 25.8 5.00 33.7 

Reactive2h 410m 42.1 4.61 41.5 

Overpro6 720m 0 8.39 0 

Dolly10m 381m54s 0 7.16 0 

Dolly30m 352m 0 3.73 0 

Dolly2h 352m 0 3.73 0 
 

The results show that reactive provisioning is not able to properly 
provision the system with missing capacity ranging from 23.2 to 
44.2 missing replica minute. Snapshotting more often reduces the 
time to spawn new replicas by restore and replay but capacity is 
missing during the spawning operations. 

Overprovisioning (Overpro6) always provides an adequate 
capacity but at a significantly larger cost on each cloud platform. 
In contrast, Dolly uses much less resources while still providing 
the required capacity. A 10 minute prediction window (Dolly10m) 
requires more snapshots to be able to react to any new capacity 
demand at the end of the short prediction window. A 30 minute 
prediction window (Dolly30m) is enough to provide an optimal 

provisioning using less than half of the resources of the 
overprovisioned configuration. 

Figure 9 shows in more detail the behavior of each algorithm. 
When reactive provisioning is used, additional capacity is used to 
spawn a new replica from the latest snapshot so that a new 
snapshot can be generated. When capacity needs to be increased, 
the system remains underprovisioned during the time replicas are 
spawned. The older the snapshot the longer it takes to spawn new 
replicas. In the Reactive2h case, replicas spawning starting at t=80 
completes only 17 minutes later, leaving the system with only 2 
available replicas to serve requests during the first peak period. 

The Overpro6 configuration constantly provides 6 replicas except 
for when the snapshot is generated where a node is briefly paused. 
The large shaded area shows the amount of wasted resources. 

Dolly with a 10 minute prediction window (Dolly10m) behaves 
similarly on both cloud platforms. As the prevision window slides 
the time to restore and replay from the latest snapshot exceeds the 
prediction window size. This is why Dolly spawns new replicas to 
generate new snapshots at deadlines s1 and s2. While new replicas 
are spawned from s1 during the first capacity increase, the write 
spike quickly triggers an additional replica to generate s2. Four 
replicas are paused at the end of the first peak and resumed for the 
second peak (no replay time since no write occurred during that 
paused time). An additional replica is quickly spawned from s2.  

With a 30 minute or longer prevision window (Dolly30m and 
Dolly2h), decisions change between the private and the public 
cloud according to the cost functions. While less machine time is 
used on the private cloud by generating new snapshots from an 
additional replica online (s1) or from a paused replica (s2), the 
storage cost of a new snapshot dominates the IO cost of replay for 
EC2. Therefore all replicas are always spawned from the original 
s0 snapshot in the public cloud. Instances are also not stopped 
between the two peaks as instances are paid for a full hour, 
pausing and restarting them 10 minutes later costs more than 
letting them run. 

In summary, we have shown that Dolly with a prediction window 
as short as 30 minutes is able to provide optimal resource 
utilization (according to administrator defined cost functions) 
while always providing the required capacity. 

replica spawning 

triggered here 

replicas available  

snapshotting  

cheaper to leave instances online  

snapshotting  

snapshotting  

s1 s1 s2 s2 s1 s2 
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7. Related Work 

Much of the prior work on dynamic provisioning [20], [21], [22], 
[4] has focused on dynamic provisioning of the front tiers of web 
applications. In this work we focus on the database tier that differs 
from other tiers due to its large dynamic state. Commercial 
solutions such as Oracle RAC [13] use a shared disk approach to 
avoid the state replication problem. The use of in-memory 
databases on top of a shared storage has also been considered 
[12]. Our work focuses on cloud environments where a shared 
disk approach cannot typically be deployed. 

Amazon Relational Database Service (RDS) [2] works with 
Amazon Auto Scaling [1] to provide reactive provisioning of 
asynchronously replicated (i.e. master/slave) MySQL databases 
based on static thresholds. Microsoft in its Azure PaaS (Platform 
as a Service) cloud offering provides built-in replication in the 
lower layer of its platform but hides it to the user [15]. 
Provisioning could be enhanced on both platform using Dolly. 

The few papers related to dynamic provisioning of databases 
usually focus on workload prediction without modeling the time 
to spawn new replicas [8]. Dolly can work with any load predictor 
and provisions database replicas accordingly by predicting VM 
cloning and replica resynchronization time. The problem of re-
synchronizing database replicas in a shared nothing environment 
has been described in [17]. However, the proposed technique only 
relies on log replay and does not exploit snapshotting as a way to 
bring up new replicas. Even in a more recent work [10], state 
synchronization time is based on fixed estimates for replay. We 
have shown that using virtualization, we are able to snapshot 
databases via VM cloning and predict state replication time 
accurately. 

8. Conclusion 

Database provisioning is a challenging problem due to the need to 
replicate and synchronize disk state. Since modern data centers 
and cloud platforms employ a virtualized architecture, we 
proposed a new database replica spawning technique that 
leverages virtual machine cloning. We argued that VM cloning 
offers a replication time that depends solely on the VM disk size 
and is independent of the database size, schema complexity and 
database engine. We proposed models to accurately estimate 
replica spawning time and analyzed the tradeoffs between 
capacity provisioning and database state snapshotting. To the best 
of our knowledge, Dolly is the first database provisioning system 
that can be adapted to the specifics of various cloud platforms via 
administrator-defined cost functions. 

We implemented Dolly and integrated it with a commercial-grade 
open source database clustering middleware. We proposed 
different cost functions to optimize resource usage in a private 
cloud and to minimize cost for the Amazon EC2 public cloud. We 
evaluated our prototype with a TPC-W e-commerce workload and 
demonstrated the benefits of an automated database provisioning 
system for the cloud, with optimized solutions adapted to different 
cloud platform specifics. We plan to release Dolly as open source 
software and hope that it will facilitate replicated database 
deployments in virtualized environments such as clouds. 

Acknowledgement 

We would like to thank Steve Dropsho for early contributions to 
this work. This research was supported in part by NSF grants 

CNS-0834243, CNS-0720616, CNS-0916972, CNS-0855128, 
and a gift from NEC. 

9. References 

[1] Amazon Auto Scaling - http://aws.amazon.com/autoscaling/ 

[2] Amazon RDS - http://aws.amazon.com/rds/ 

[3] C. Amza, E. Cecchet, Anupam Chanda, Alan L. Cox, S. Elnikety, 

R. Gil, J. Marguerite, K. Rajamani, and W. Zwaenepoel – 

Specification and implementation of dynamic Web site 

benchmarks – WWC, 2002. 

[4] M. N. Bennani and D. A. Menasce – Resource allocation for 

autonomic data centers using analytic performance models – 

ICAC ’05, Washington, DC, USA, 2005. 

[5] J. Blancet – Snapshots in Xen – Online FAQ, https://zagnut.storeit 

offsite.com/home/jim.blancet/FAQ/Snapshots%20in%20xen 

[6] E. Cecchet, R. Singh, U. Sharma and P. Shenoy – Dolly: 

Virtualization-driven Database Provisioning for the Cloud – 

UMass Technical Report UM-CS-2010-006. 

[7] E. Cecchet, G. Candea and A. Ailamaki – Middleware-based 

Database Replication: The Gaps between Theory and Practice. – 

ACM SIGMOD, June 10-12, 2008 

[8] J. Chen, G.Soundararajan, C.Amza – Autonomic Provisioning of 

Backend Databases in Dynamic Content Web Servers – ICAC '06, 

June 2006. 

[9] S. Elnikety, S. Dropsho, E. Cecchet and W. Zwaenepoel – 

Predicting Replicated Database Scalability from Standalone 

Database Profiling – EuroSys, April 2009. 

[10] S. Ghanbari, G. Soundararajan, J. Chen, and C. Amza – Adaptive 

Learning of Metric Correlations for Temperature-Aware Database 

Provisioning – ICAC, June 2007. 

[11] J. Hellerstein, F. Zhang, and P. Shahabuddin – An Approach to 

Predictive Detection for Service Management – Proceedings of the 

12th Conference on Systems and Network Management, 1999. 

[12] K. Manassiev and C. Amza – Scaling and Continuous Availability 

in Database Server Clusters through Multiversion Replication – 

DSN 2007, June 2007. 

[13] Oracle – Oracle Real Application Clusters 11g – Oracle Technical 

White Paper, April 2007. 

[14] OpenNebula project. http://opennebula.org/ 

[15] M. Otey – SQL Server vs. SQL Azure: Where SQL Azure is Limited 

- SQL Server Magazine, August 2010. 

[16] Sequoia Project. http://sourceforge.net/projects/sequoiadb/ 

[17] G. Soundararajan and C. Amza – Online data migration for 

autonomic provisioning of databases in dynamic content web 

servers – 2005 Conference of the Centre For Advanced Studies on 

Collaborative Research, Toronto, October 2005. 

[18] TPC-W Benchmark, ObjectWeb implementation, 

http://jmob.objectweb.org/tpcw.html. 

[19] Transaction Processing Council. http://www.tpc.org/. 

[20] B. Urgaonkar, P. Shenoy, A. Chandra, and P. Goyal – Dynamic 

Provisioning for Multi-tier Internet Applications – ICAC-05, 

Seattle, June 2005. 

[21] D. Villela, P. Pradhan, and D. Rubenstein – Provisioning Servers 

in the Application Tier for E-commerce Systems – IWQOS 2004, 

June 2004. 

[22] Q. Zhang, L. Cherkasova, and E. Smirni – A regression based 

analytic model for dynamic resource provisioning of multi-tier 

applications – ICAC ’07, Washington, DC, 2007. 


