
 1

Dolly: Virtualization-driven
Database Provisioning for the Cloud

Emmanuel Cecchet, Rahul Singh, Upendra Sharma, Prashant Shenoy

University of Massachusetts, Amherst, USA

{cecchet,rahul,upendra,shenoy}@cs.umass.edu

Abstract

Cloud computing platforms are becoming increasingly popular for
e-commerce applications that can be scaled on-demand in a very
cost effective way. Dynamic provisioning is used to autonomously
add capacity in multi-tier cloud-based applications that see
workload increases. While many solutions exist to provision tiers
with little or no state in applications, the database tier remains
problematic for dynamic provisioning due to the need to replicate
its large disk state.

In this paper, we explore virtual machine (VM) cloning
techniques to spawn database replicas and address the challenges
of provisioning shared-nothing replicated databases in the cloud.
We argue that being able to determine state replication time is
crucial for provisioning databases and show that VM cloning
provides this property. We propose Dolly, a database provisioning
system based on VM cloning and cost models to adapt the
provisioning policy to the cloud infrastructure specifics and
application requirements. We present an implementation of Dolly
in a commercial-grade replication middleware and evaluate
database provisioning strategies for a TPC-W workload on a
private cloud and on Amazon EC2. By being aware of VM-based
state replication cost, Dolly can solve the challenge of automated
provisioning for replicated databases on cloud platforms.

Categories and Subject Descriptors D.2.9 [Software
Engineering]: Management.

General Terms Algorithms, Management, Measurement,
Performance, Design, Experimentation.

Keywords Database, Autonomic Provisioning, Virtualization.

1. Introduction

Online applications have become popular in a variety of domains
such as e-retail, banking, finance, news, and social networking.
Typically such web-based applications are hosted in data-centers
or on cloud computing platforms, which provide storage and
computing resources to these applications. Numerous studies have
shown that the workloads seen by these web-based cloud

applications are highly dynamic and exhibit variations at different
time-scales [21], [22]. For instance, an application may see a
rapid increase in its popularity, causing its workload to grow
sharply over a period of days or weeks. At shorter time-scales, a
flash crowd can cause the application workload to surge within
minutes. Applications can also see seasonal trends such as higher
workloads during particular periods, e.g., during Black Friday,
marketing campaigns, or a new product launch.

One possible approach for handling workload fluctuations is to
employ dynamic provisioning of server capacity. Dynamic
provisioning involves increasing or decreasing the number of
servers (and server capacity) allocated to an application in
response to workload changes. Dynamic provisioning is especially
well-suited to web-based cloud applications for two reasons. First,
it is often difficult to estimate the peak workload of an Internet
application, making it challenging to a priori provision for the
peak demand. Second, today’s cloud platforms support on-
demand allocation of servers and employ a pay-as-you-go service
model. These features are attractive from an application provider’s
perspective, since servers can be requested only when a workload
spike arrives or is anticipated, and charging is based only on the
duration of the workload surge. Cloud platforms employ
virtualization to support these features—upon a customer request
for a new (virtual) server, a new virtual machine (VM) is created
on a physical server with idle capacity, and the specified virtual
disk image is copied to the server, upon which the server is ready
for use. In fact, cloud platforms such as Amazon’s EC2 platform
already support dynamic provisioning (aka “auto scaling”) where
such VMs are automatically started when a threshold on a user-
specified metric such as CPU utilization is exceeded in the current
application [1].

Much of the prior work on dynamic provisioning [20], [21], [22],
[4] has assumed that web applications have a multi-tier
architecture and focus on dynamic provisioning of the front web
tier or the middle application tier. Provisioning of these front and
middle tiers is simple since these tiers have little or no application
state and provisioning merely involves dynamic startup (or
shutdown) of VMs in response to workload fluctuations. This
prior work assumes that the backend database tier, where much of
the application state is stored, is over-provisioned and thus does
not require dynamic provisioning. However, in scenarios where
the database tier is the bottleneck (e.g., due to compute-intensive
query workloads), this simplifying assumption has meant that our
inability to a priori estimate the peak workload for Internet
applications will cause the database tier to become overloaded and
drop user requests. Further it prevents the web application from
fully exploiting the benefits of the pay-as-you-go and on-demand

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
VEE’11, March 9–11, 2011, Newport Beach, California, USA.
Copyright © 2011 ACM 78-1-4503-0501-3/11/03…$10.00.

 2

server allocation in the cloud for the backend tier. Dynamic
provisioning of the back-end database tier has not been
considered in the prior literature since it is harder to implement—
replication and synchronization of the associated disk state of the
database needs to be handled, in addition to the ‘simpler’ problem
of starting up new database VM replicas.

In this paper, we consider the problem of dynamic provisioning of
the database tier of online web applications. We use virtualization
as a key building block of our dynamic provisioning system, in
particular by leveraging VM snapshots and cloning as the basis
for replicating database state in a platform-independent manner.
In addition, we devise intelligent state replication strategies to
reduce the latency of starting up new database replicas in
virtualized public and private clouds.

1.1 Why is database provisioning hard?

Dynamic provisioning of server capacity typically involves two
problems: when to trigger a capacity increase (or decrease), and
how to achieve the desired capacity addition or reduction. Both
the “when” and the “how” questions are simpler in case of the
web and application tiers than the database tier.

Typically the decision of when to trigger provisioning is made in a
lazy fashion for the web and the application tiers—upon an actual
significant workload change, or an anticipation of one in the near
future. Such lazy triggers are appropriate for these tiers since
front-end provisioning schemes assume that new capacity can be
added immediately whenever needed and that the only latency is
that incurred for VM startup. In contrast, provisioning of a new
database replica involves (i) extracting database content from an
existing replica, if not already available, and (ii) copying and
restoring that content on a new replica. These operations can take
minutes or hours depending on the database size.

In fact, traditional “just-in-time” cloud provisioning techniques,
including Amazon Auto Scaling [1], are similarly based on lazy
triggers and/or thresholds and do not take into account the time to
replicate the database state. If this state replication and
synchronization overhead is ignored, the newly provisioned
capacity comes online far too late to handle the workload increase
and the capacity requirements will not be met in a timely fashion.

Similarly the “how” to achieve the desired capacity increase must
be handled differently in case of dynamic database provisioning.
Typically this part involves (i) a capacity determination model to
estimate how many replicas to provision for a given workload,
and (ii) the actual system steps necessary in starting up and
configuring those replicas for use. Capacity determination models
predict the future workload using historical data or dynamic
predictors [11] and then use queuing techniques to estimate the
number of replicas needed to service the predicted workload [9].
This aspect of provisioning is similar for both the front-end web
and the back-end database tier. In fact, one of the few papers to
address dynamic provisioning of the database tier [8] proposed an
analytical model for databases to determine capacity needed to
service a given workload. However, this work did not address the
important systems issues of “when” to trigger provisioning based
on state replication overheads, nor did it address the many system
challenges involved in dynamically starting up database replicas.
Specifically, in database provisioning, even after a VM replica
starts up, there is an additional overhead of synchronizing the

state of the new replica with the current state of all other replicas
to preserve data integrity. No such overheads are incurred when
provisioning “stateless” web and application tier replicas.

Thus, database provisioning differs significantly from traditional
web server provisioning because databases are stateful and their
state can be very large (and this state must be replicated before a
new database replica can be spawned). To provision database
replicas in a timely fashion, it is necessary to know how much
time will be required to replicate/synchronize this disk state and
bring the replicas online. These times vary greatly with the
database size, schema complexity, backup/restore tool options,
database artifacts (e.g., storage engine configuration). Moreover,
there are many tradeoffs on how and when to snapshot the
database state to minimize replica resynchronization time. It is
therefore non-trivial to estimate the exact time needed to spawn a
new replica.

1.2 Research Contributions

In this paper, we present Dolly1, a system for dynamically
provisioning database replicas in cloud platforms. Dolly is
database platform-agnostic and uses virtualization-based
replication mechanisms for efficiently spawning database replicas.

The key insight in Dolly is to intelligently use VM snapshots and
cloning as the basis for dynamic database provisioning. In Dolly,
each database replica runs in a separate virtual machine. Instead
of relying on the traditional database mechanisms to create a new
replica, Dolly clones the entire virtual machine (VM) of an
existing replica, including the operating environment, the
database engine with all its configuration, settings and the
database itself. The cloned VM is started on a new physical
server, resulting in a new replica, which then synchronizes state
with other replicas prior to processing user requests.

Our work on Dolly has led to the following contributions:

• When to provision: Dolly takes the long latency of spawning
database replicas into account when triggering “eager”
provisioning decisions. To do so, Dolly incorporates a model
to estimate the latency to spawn a replica, based on the VM
snapshot size and the database resynchronization latency,
and uses this model to trigger the replica spawning process
well in advance of the anticipated workload increase.

• How to provision: Dolly incorporates an intelligent
scheduling technique that can determine whether it is
cheaper to take a new VM snapshot or use an older snapshot
when spawning a new replica. In addition, the technique can
proactively trigger VM snapshots to reduce the future latency
of spawning database replicas. These mechanisms are
implemented in a new provisioning algorithm, with user-
defined cost functions to characterize database provisioning
policies on cloud platforms. This allows the system
administrator to tune the provisioning decisions to optimize
resource usage of her cloud infrastructure.

• Prototype implementation: We have developed a prototype
of Dolly using Sequoia [16], a commercial-grade open-

1 Inspired by the sheep Dolly, the first mammal to be cloned

successfully.

 3

source database clustering middleware, and have combined it
with the OpenNebula [14] cloud manager to address
provisioning in both private and public clouds. We
demonstrate the efficacy of Dolly in provisioning Mysql-
based database tiers.

• Evaluation on public and private clouds: We conduct an
experimental evaluation of Dolly on Amazon’s EC2 public
cloud and on a laboratory-based Xen private cloud. Our
experiments with a TPC-W [19] e-commerce workload show
the ability of Dolly to properly schedule provisioning
decisions to meet capacity requirements in a timely fashion
while optimizing resource usage in private clouds and
minimizing cost in public clouds.

The remainder of this paper is organized as follows. Section 2
introduces the necessary background on database replication and
replica spawning. Section 3 discusses the core techniques for
database provisioning in the cloud and when to provision, while
section 4 addresses how to provision. Section 5 presents Dolly’s
implementation. We perform an experimental evaluation on
private and public clouds in Section 6. Finally, Section 7
discusses related work before concluding in Section 8.

2. Background

In this section, we present background on virtualized cloud
platforms and database replication and also formulate the problem
of dynamic database provisioning.

2.1 Virtualized Cloud Platforms

Our work assumes a virtualized cloud platform that runs
distributed web-based applications. The cloud platform is
essentially a data center that provides compute and storage
resource to its applications. Each physical server in the data center
is assumed to run a virtual machine monitor (aka hypervisor) and
one or more virtual machines that encapsulate application
components. The cloud platform, whether public or private, is
assumed to support on-demand allocation of virtual machines—
applications can request one or more virtual machines at any time,
upon which the requested VMs are created, placed on to physical
servers with idle capacity and started up. We assume that
application components are preconfigured as virtual disk images
that are available to the cloud platform, enabling automated VM
allocation and startup. Such on-demand VM allocation is a
prerequisite for our dynamic provisioning techniques. Our work
targets both public cloud platforms such as Amazon EC2 as well
as private Linux-based clouds constructed using Xen/KVM
virtualization platforms. In case of public clouds, where servers
and storage is charged based on a pay-as-you-use model, we
assume that the pricing model is known a priori and can be taken
into account when making provisioning decisions.

2.2 Problem Formulation

We assume that cloud platforms run distributed web applications.
Each application is assumed to employ a multi-tier architecture
consisting of a front-end web tier, a middle application (e.g.,
J2EE) tier, and a backend database tier. Each tier is assumed to be
dynamically replicable. That is, each tier is assumed to comprise
one or more VM replicas, and it is assumed that the number of
replicas at each tier can be varied based on changing workload
demands at that tier. We assume that each tier also assumes a

dispatcher/load-balancer that is responsible for distributing
requests to various replicas.

Our work focuses on the database tier. In contrast to prior work
that has typically assumed a static number of (over-provisioned)
replicas at the database tier, we assume that this tier can also be
dynamically provisioned like the other tiers. The dynamic
provisioning problem for the database tier can then be stated as
two sub-tasks: (i) when to trigger a capacity change based on
current and future workload trends, and (ii) how to startup or
shutdown the desired number of VM replicas. As discussed
above, both tasks raise new challenges when dynamically
provisioning databases. Our goal is to design a database
provisioning platform that (i) given future workload forecasts,
will estimate the time to start up a new database replica and will
use this latency to trigger a provisioning change sufficiently in
advance of the anticipated change, and (ii) uses an intelligent
algorithm that takes user-specified cost functions to optimize the
overheads of starting up (or terminating) the desired number of
replicas.

2.3 Database Replication

Before presenting our provisioning technique, we present brief
background on database replication. Dynamic database
provisioning assumes that the underlying database platform is
replicable and clusterable. In general, there are two primary
architectures for implementing database replication: shared-disk
and shared-nothing. In the shared-disk architecture, there is a
single copy of the data on a shared disk (SAN or NAS) that is
accessed by all replicas. Typically shared-disk database platforms
such as Oracle RAC [13] require specific hardware (in the form of
shared disk systems) that may not be available in commodity
cloud platforms.

In the shared-nothing architecture, there are multiple database
server processes that run on different machines, and each replica
has a copy of the database content on its local disk. Consistency is
maintained across replicas using LAN communications. Dolly
currently assumes a shared-nothing architecture since they are
well suited for today’s cloud platforms and also commonly used
in multi-tier web applications.

Within shared-nothing systems, there are two main replication
strategies: master-slave and multi-master. In master-slave, updates
are sent to a single master node and lazily replicated to slave
nodes. Data on slave nodes might be stale and it is the
responsibility of the application to check for data freshness when
accessing a slave node. Multi-master replication enforces a
serializable execution order of transactions between all replicas so
that each of them applies update transactions in the same order.
This way, any replica can serve any read or write request.

Further, replication can be implemented inside the database
engine, also known as in-core replication, or externally to the
database, commonly called middleware-based replication. The
technique to add a new replica is similar in both environments. In
both architectures, transactions are balanced among the replicas
and are stored in a transactional log (also called recovery log).
The middleware design usually keeps a separate transactional log
for replication, whereas the in-core approach stores the
information in each database’s replica transactional log.

 4

Figure 1 shows the steps to spawn a replica in a middleware-based
replication environment. First, a command to add a new replica is
issued from the management console to the replication
middleware. A checkpoint is then created in the transactional log
(step 2) and a replica is temporarily taken out of the cluster to take
a snapshot (also called database dump) of the database content
(step 3 via DB2). As soon as the snapshot has been taken, this
replica is resynchronized by replaying the transactions written in
the transactional log since the checkpoint (step 4) and it rejoins
the cluster. A new replica is then started on a separate node, and
the snapshot is seeded to this new replica using a restore operation
(step 5). Finally, the updates that have occurred since the snapshot
was taken are replayed from the transactional log (step 6) to
resynchronize the new replica and bring it up-to-date with all
other replicas in the system.

Figure 1. Procedure to spawn a replica.

Conceptually, the above steps for replica creation can be classified
into three key phases: (i) the backup phase, where database
content is extracted from an existing replica and moved to a new
node, (ii) the restore phase, where a new replica is seeded with
this snapshot, and (iii) the replay phase, where the replica is
resynchronized with others by replaying new updates from the
transactional log.

As we will see in the Dolly design, the use of virtualization
simplifies these steps. Dolly employs VM snapshots to implement
the backup phase and uses VM cloning to restore the snapshot
onto a new replica. By doing so, Dolly is database-platform
agnostic, since it relies on the virtualization platform, rather than
native platform-specific tools, to implement provisioning via
backup/restore. VM cloning is independent of the database
schema complexity and eliminates common backup issues of
database specific extensions and configurations [7].

Further, the Dolly design is general and can accommodate both
master-slave and multi-master shared-nothing architectures; our
current implementation, however, is based on a multi-master
middleware-based replication and is implemented on Sequoia, a
commercial-grade database clustering middleware [16].

3. Dolly: When to Provision

In this section, we first describe the high-level approach used in
Dolly to provision database replicas via VM snapshot and cloning
and then present a model to estimate the latency of these
operations when provisioning a new replica.

3.1 Replica Spawning via VM Cloning

Dolly uses the ability to make VM snapshots and clone VMs to
efficiently replicate database state and start new replicas. Figure 2
illustrates the high-level approach to spawn 2 new replicas in a
private cloud. First, the virtual machine (VM) running a database
replica is stopped on machine 1 and cloned to be stored on a
backup server (machine B). Two new replicas are then spawned
by cloning the VM from the backup server and starting these new
VMs. Dolly minimizes the downtime of the existing replica that is
being cloned by exploiting VM or file-system-level snapshots. A
file-system or VM-level snapshot [5] is a point-in-time copy of
the virtual disk image; snapshots can be made efficiently, after
which the original VM replica can be resumed immediately and
the snapshot image can be copied to the other machine(s) in the
background.

Figure 2. Replica spawning in a private cloud.

Figure 3 shows how spawning 2 replicas works in a public cloud
such as Amazon EC2 that provides a Network Attached Storage
(NAS) service called Amazon Elastic Block Storage (or EBS).
Note that EBS volumes cannot be shared by multiple instances
and are therefore different from a SAN or shared disk approach.

Figure 3. Replica spawning in a public cloud.

The VM disk image is stored on an EBS volume and the VM
boots from this image. When the VM is stopped, the volume is
detached from its running server. EBS allows snapshots of the
volume to be created; doing so asynchronously replicates the
volume. The volume snapshot must then be registered in EC2 in
order to create new VMs. This is equivalent to storing the image

DB1

Vol1

OS

DB1

Vol1

OS

stop

restart

snapshot DB2

Vol2

OS

register

DB2

Vol2

OS

DB2

Vol3

OS

DB2

Vol4

OS

start

DB1

Vol1

OS

DB1

VM1

OS

DB1

VM1

OS

stop

resume

clone DB2

VM2

OS

DB2

VM3

OS

clone

1

DB2

VM3

OS

start
DB2

VM4

OS

DB2

VM4

OS

start

1

B

3 3 2 2

DB1
new

replica backup DB2

snapshot

restore

1

Client SQL requests

Replication middleware

Transactional
log

Load balancer

Management
console add

replica

3

4
checkpoint

2

6

resynchronize

5

 5

to a backup server in a private cloud. When a new VM is created
from an EBS snapshot, a clone of that volume is created and
dedicated to the newly started instance. In our case, we assume
that the database server disk state (configuration file and data
within the database) are stored on the EBS volume; thus
snapshots and booting a new VM from the snapshot is an effective
mechanism to replicate the shared-nothing database content and
start up a new database replica.

3.2 Determining replica spawning time

Dolly must accurately estimate the overheads of the above VM
snapshot and cloning operations in order to intelligently trigger
the spawning of new replica(s). We now present a simple model
to estimate this latency.

In general, there is a tradeoff between the time to snapshot/clone a
database/VM, the size of the transactional log and the amount of
update transactions in the workload. For example, a new replica
can be seeded with an old snapshot (e.g., a snapshot that was
taken to seed a different replica), which eliminates the backup
phase overhead. However, use of an older snapshot forces the
system to keep a larger transactional log and also increases the
time to replay updates from this log during the replay phase. On
the other hand, taking a new snapshot for each new replica may
incur significant overheads during the backup phase, especially if
the database is large. By analyzing the overheads of these
operations, Dolly can choose the option with the lower latency.

The replica spawning overhead can be analyzed using the five
variables defined in Table 1.

Table 1. Replica spawning time variables.

bi backup time to generate VM snapshot i

ri time to restore/clone snapshot i on a new replica

replayi time to replay update transactions logged since
snapshot i

wt average update transaction throughput observed at the
time the new replica spawning command is issued

wmax maximum update transaction throughput of the replica

Figure 4. Decomposition of the replica spawning time with a new
snapshot.

When no snapshot is available, it is necessary to perform a new
backup and restore, yielding an overhead of (bi+ri) as shown on
Figure 4. The replay phase then replays all updates that have
occurred during this period. We can estimate the replay time by
observing the current rate of update transactions and assume that
it will remain a valid approximation during the replay time. The
new replica will be able to replay the requests at wmax speed since

it does not have to execute any other transaction. Therefore, the
time to replay the updates that occurred during backup/restore is
() max/i i tb r w w+ . Since new updates will occur during this replay, it

will take an additional ()()max max/ /i i t tb r w w w w+ to replay them. This

is the geometric series with: ,t

t max

max

w
p w w

w
= < ,

0

1

1

i

k

p
p

∞

=

=
−

∑

If the system is under peak load, wt = wmax, the replica will never
be able to catch up and it will have a lag of bi+ri.

Table 2. Replica spawning time formulas

Replica spawning time when
no snapshot is available

() max

max

i i

t

w
b r

w w
+

−

Replica spawning time from an
existing snapshot i

() max

max

i i

t

w
r replay

w w
+

−

We find the equations in Table 2 and conclude that: it is faster to
take a new snapshot j to spawn a new replica if bj+rj < ri+replayi.
Any dynamic provisioning technique for replicating the database
tier of the application needs to consider this key tradeoff. The VM
cloning mechanism used by Dolly provides a predictable
backup/restore time independent of the database size and schema
complexity as shown in Table 8. Cloning only depends on the VM
image size that is known and its snapshotting time can be easily
predicted. replayi can be accurately predicted by recording the
execution times of each update transaction and adding them up.

Since replayi can be accurately predicted, having a constant bj
and rj, that are independent of the database size or complexity,
allows Dolly to decide if bj<replayi in which case it is faster to
take a new snapshot than to use an existing one to spawn a new
replica.

4. Dolly: How to Provision

Our Dolly provisioning system has four main components:
capacity provisioning engine, snapshot scheduler, paused pool
cleaner and actuator. Typically, the provisioning engine will
employ a workload predictor (Section 4.1) that observes the
behavior of the system. To provision a certain capacity by a given
deadline, it is necessary to schedule capacity provisioning actions
according to the time it takes to replicate the database state
(Section 4.2). As replicas have to be spawned from a database
snapshot, the snapshot scheduler decides when new database
snapshots (VM clones) have to be taken (Section 4.3). Some
stopped or paused VMs become obsolete over time and need to be
purged by the paused pool cleaner (Section 4.4). The actuator
orchestrates and executes the orders of all the other components.

Whenever new workload predictions become available, the
capacity provisioning algorithm is invoked to compute a new
schedule to meet capacity demands. Then the snapshot scheduler
runs to check if new snapshots could be generated (possibly from
paused VMs) to make future spawning operations cheaper. If new
VM snapshots are generated, we re-run the capacity provisioning
algorithm to generate a new schedule. In the end, we obtain a
schedule of snapshot and capacity provisioning actions (adding,
pausing, resuming replicas) that are executed by the actuator.
Dolly also regularly triggers the paused pool cleaner to free old
paused VMs and snapshots that are no longer needed. A more
detailed description of the algorithms is available in [6].

time backup restore replay

bi ri

updates

()
maxmaxmax

...
w

w

w

w

w

w
rb ttt
ii 



















+

replica spawning time

 6

To adapt provisioning policies to the target cloud platform, Dolly
uses cost functions to allow the administrator to define which
option is best if multiple strategies are available. The cost can
model any metric like time, resource usage or actual resource cost
as we will show in the next sections. Table 3 lists the seven cost
functions used by Dolly and the definitions for each.

Table 3. Cloud platform specific cost functions used by Dolly.

Cost function name Definition
pause_cost(VM, t) cost of pausing VM at time t
spawn_cost(s, t, d) cost to spawn a replica from snapshot s

at time t to meet deadline d
spawn_cost(VM, t, d) cost to spawn a replica from a paused

VM at time t to meet deadline d
running_cost(VM,t1,t2) cost to run a VM from time t1 to time t2
pause_resume_cost(VM,

t1, t2)
cost to pause a VM at time t1 and

resume it at time t2
backup_paused_cost(VM) cost to backup a paused VM
backup_live_cost(VM, t) cost to backup an active VM at time t

Table 4 summarizes the variables used to measure the time used
by the different operations used by the algorithms described in
this section.

Table 4. Variables used to measure replica spawning operations.

rr Time to restore and replay from the latest snapshot

br Time to spawn from a new snapshot (backup+restore)

iVMrs Time to resume paused VM i

psr Time to pause/snapshot/resume a VM

pw Prediction window

Figure 5. Example of a capacity and write workload prediction
over time. Dolly provision replicas based on the forecast available

in the prediction window.

4.1 Capacity and workload predictors

Previous work has established how to predict replicated database
capacity based on a standalone node measurement [9]. This
allows forecasting performance scalability and identifying
potential bottlenecks. Many models exist for workload prediction
[11], [20]. Dolly does not assume any particular workload
predictor or capacity model; it can use any existing approach and
can be a platform to test new predictors or improve existing ones.

Depending on the capacity and workload predictors used, the
forecast will have a limited visibility in the future. Web sites with
stable workloads might have accurate static weekly predictions
possibly adjusted by administrators for seasonal peaks. More

dynamically changing workloads can be less predictable and only
sketch the demand for the next hour or so. We call prediction
window the time between now and the latest time in the future for
which the load and capacity demand can be predicted.

Figure 5 shows an example of capacity demand and write
throughput of a replicated database. The prediction window slides
as time goes on. Prediction windows are not necessarily of a fixed
size since a predictor can dynamically change the technique it
uses to forecast the load thus increasing or decreasing the
prediction window size. Dolly has to schedule provisioning
decisions for deadlines d1, d2 and d3, where the capacity demand
changes in the prediction window.

4.2 Provisioning replicas

The provisioning algorithm scans the prediction window and
looks for deadlines where changes in workload require additional
capacity (such as time d1 and d3 on Figure 5) or less capacity
(such as time d2 on Figure 5). The algorithm handles all deadlines
in sequence. In Figure 5, d1 is handled first. Once a schedule has
been found for d1, it moves to d2 and so on. The algorithm works
in two phases for each deadline: 1) list all possible options for
replica spawning or releasing and 2) sort these options according
to a cost function.

4.2.1 Decreasing capacity

When the capacity requirements decrease, replicas that are no
longer needed are paused. The replication engine keeps track of
the state of each stopped virtual machine replica so that it knows
exactly what has to be replayed when the VM is resumed. A
similar state is saved in the slave nodes for master/slave
replication.

When a VM is stopped in a private cloud, its image still resides
on the machine’s local disk. As we might want to resume that
image later, we do not return the machine to the free server pool
but it is put it in a special paused server pool. The machine can be
shutdown as long as it is in the paused pool. A machine can be
reclaimed from the paused server pool by the private cloud
infrastructure if the free pool is empty and additional capacity is
required for other databases or tiers. In a public cloud like EC2,
the computing instance is simply detached from the storage and
can be re-attached later to any other instance.

The platform specific cost function, pause_cost(VM, d)
determines the cost of pausing VM at time d. For example, in EC2
where server time is billed by the hour, if at time d VM1 has just
started a new billed hour and VM2 is toward the end of its billed
hour, we would have pause_cost(VM1, d)>pause_cost(VM2, d).
On a private cloud, the administrator might prefer to switch off
the hottest machines to improve cooling. If the capacity has to be
reduced by r replicas at time d, the algorithm schedules the r
replicas that have the lowest pause_cost for pausing.

4.2.2 Increasing capacity

When an increase in capacity is predicted at deadline d, the
algorithm explores all replica spawning options from snapshots
and paused VMs.

In our system, the replicated database always has at least one
snapshot available for creating new replicas. The first snapshot is
created when initializing the system as shown on Figure 5, and
snapshots are updated regularly when needed, as will be explained
in section 4.3. When new replicas are spawned from a snapshot,

time

of
replicas
needed

prediction window

backup

restore

now

init

time

past

write
txput

wmax

d1 d2 d3

unpredicted

future

snapshot1 snapshot2

 7

we can predict the time it takes to bring the replica online using
the formula described in section 3.2.

Dolly looks at all available snapshots that can spawn replicas in
time to meet deadline d, as well as all paused VMs that can be
resumed and resynchronized in time. Each option has its own cost
defined by the spawn_cost function. For example, on a private
cloud, options using the latest start times allow unused nodes to
remain switched off longer and save energy. On a public cloud
such as EC2, the cost can be defined by the price the user is going
to pay for the compute hours of the instance, the IOs on EBS and
the monthly cost for data storage.

The cheapest options are selected to be executed. Note that if
there are not enough options to provision all replicas, this means
that it is not possible to spawn all replicas in time for the deadline
given the current workload. We address this scenario in the next
section.

4.2.3 Admission control

If a capacity deadline cannot be met in time with the current
forecast, it is possible to perform admission control on the system
in multiple ways. Note that this scenario can only happen if the
predictor drastically changes its predictions for the current
prediction window (such as an unpredicted flash crowd).

First we assume that no writes will update the system from now
on and compute the time it takes to restore and replay from the
latest snapshot (rr), to take a new snapshot and spawn a replica
from it (br=backup+restore) or resume from paused VMs (

iVMrs).

If we find that (, , ,)
i jVM VMnow min rr br rs rs d+ ≤ , this implies that

there is enough time to create replicas but the write throughput is
too high or too close to wmax for replicas to catch up in time.
Doing admission control on the write throughput wt can be used
to meet the deadline as long as:

max

max

(, , ,).
i jVM VM

t

min rr br rs rs w
w w

d now
≤ −

−

Note that doing admission control on writes (write throttling),
means that update transactions are going to be delayed.
Depending on timeout settings, this might translate into
transactions being aborted. The minimum acceptable write
throughput can be set by the administrator.

If replicas cannot be spawned in time even with write throttling, it
is necessary to perform admission control on the incoming
workload to prevent the system from crashing due to overload.
Admission control can be performed by the replication engine by
allowing only a fixed number of transactions in the system at any
given time. It can also be achieved at another tier in front of the
database (e.g. web tier admission control). A workload matching
the current capacity has to be maintained until additional capacity
becomes available at time:

max

max

(, , ,)
i jVM VM

t

w
d now min rr br rs rs

w w
− +

−

The administrator can set a minimum acceptable wt and let Dolly
perform admission control and schedule spawning operations
accordingly.

4.3 Scheduling new database snapshots

In addition to provisioning new replicas or pausing existing ones,
Dolly must deal with the problem of periodically creating new

database snapshots by cloning VMs. A newer snapshot reduces
the cost of spawning a new replica in the future (since it has a
more recent version of the database and will incur a lower
synchronization overhead). However, creating a snapshot incurs
an overhead, and Dolly must intelligently schedule their creation
to balance the cost and the benefit.

Two problems have to be solved to schedule new database
snapshots: how and when. How can either be from an already
paused VM or by pausing an active VM for the time of the
snapshot (see section 4.3.1). A new snapshot must be ready when
the time to restore and replay from the previously available
snapshot is greater than the prediction window (see section 4.3.2).

4.3.1 How to snapshot?

An opportunistic method to create a new snapshot is to clone
VMs that have been paused. While a paused VM only captures
the database state until the time it was paused, it might still be a
significant improvement over the last snapshot available.

The only other option requires taking an existing replica offline
for the time of the pause/snapshot/resume (psr) operation and
replaying of updates that happened since the VM was paused.
This means that the capacity of the system is going to be reduced

by 1 replica from tbackup to () max

max
backupbackup t

t

w
t psr replay

w w
+ +

−
.

If the workload prediction does not allow a replica to be
temporarily disabled during that time interval, an additional
replica has to be provisioned at time tbackup to allow taking a new
snapshot. This new deadline can be added to the current capacity
prediction and the capacity provisioning algorithm described in
section 4.2 has to be re-executed to provision this additional
replica in time.

4.3.2 When to snapshot?

If we want to provision additional replicas in time, the time to
restore and replay from the latest available snapshot should never
exceed the prediction window. Otherwise, when the predictor
forecasts a new capacity demand increase at the end of the
prediction window, there would not be enough time to spawn new
replicas. This means that a new snapshot must be ready to be fully
restored at time tswitch defined by:

,i backup switchi
backupr replay pw+ =

where pw is the prediction window and

To make sure that additional replicas can be provisioned at tswitch
using the new snapshot, the backup operation must be started
prior to time

1ibackupt
+

so that there is enough time to backup, restore

and replay a new replica at time tswitch. This translates to:

1 1 , 11i i backup switch ii
backup backup switch backupb r replay t t

+ + ++

+ + ≤ −

To guarantee that a new snapshot can be ready in time, the
prediction window must be long enough so that:

1 1 1 ,1i i i backup switchi
switch backup backup backuppw t t b r replay

+ + + +

≥ − ≥ + +

If the prediction window is too short or write throughput is too
high, admission control can be used to make sure that new
snapshots can be prepared in time within the prediction window.

The algorithm then scans the prediction window and look at each
deadline where new replicas have to spawned (adding capacity

,

max

switch

backup switchi

backupi

t

t

t t

w
replay

w=

= ∑

 8

only). For each deadline, it calculates the cost to spawn new
replicas for 3 strategies:

1) The cost to spawn replicas from a snapshot given by
spawn_cost (defined in section 4.2.2) for all snapshots that can be
restored and replayed by the deadline.

2) For each paused VM (step 3) that can be snapshotted, restored
and replayed by the deadline, the cost to take the backup from the
paused VM is given by the cost function backup_paused_cost to
which we add the cost of spawning replicas from this backup.

3) The cost of creating a backup from a live replica is given by the
backup_live_cost function to which we add the cost of spawning
replicas from this backup and the eventual cost of bringing a
replica online if no idle replica is available.

Next, the algorithm keeps the option that has the minimal cost for
each deadline and schedules the operations accordingly. If no
option is available to spawn a replica in time for a given deadline,
the algorithm computes at what time a snapshot should be taken
and modifies the capacity requirements to ask for one replica to be
ready by that time. The capacity provisioning is then invoked to
provision that replica, eventually using admission control if
needed.

The capacity provisioning algorithm is re-run every time new
snapshots have been scheduled to check if a better replica
spawning schedule is available. If this is the case, the old schedule
is replaced by the new schedule.

4.4 Relinquishing resources

Over time, some paused VMs become obsolete and are not cost
effective to be resumed. The same applies to old VM snapshots
that need to be erased. The paused pool cleaner has the
responsibility of releasing these resources. It is invoked at regular
time intervals that can be set by the administrator (from every
hour, to every day or every week). It scans each paused VM and
checks the cost of resuming that VM (spawn_cost(VM, now,
pwend)) and compares it to the cost of spawning a replica from the
latest available snapshot (spawn_cost(bi, now, pwend)). If the cost
of resuming the VM is higher, it means that this VM will not be
used anymore and it can be released.

A similar approach can be used for snapshots. All snapshots that
are older than the current latest available snapshot can be
released. However, the administrator might want to keep multiple
older backups for recovery purposes. On a public cloud like EC2,
since storage is paid for on a monthly basis, a better policy may be
to retain old volumes until the end of the billing cycle.

4.5 Current limitations

Dolly assumes that all the components of the cloning operation
(backup, restore, snapshot…) have a constant time which is
correct for homogeneous setups with LAN interconnections. This
might not be the case with heterogeneous resources or resources
in different EC2 regions or clouds using WAN interconnections.
The worst case scenario measurement could be taken to ensure
safe scheduling, but specific optimizations for such environments
are left to future work. Additional optimizations such as virtual
machine migration can also be considered in these environments.

When synchronizing slave nodes in a master/slave setup, the
synchronization process uses master node resources and
potentially impacts its performance. We have not currently

modeled this performance impact but we did not find it noticeable
in our early experiments.

5. Dolly Implementation

We have implemented the concepts of Dolly in the Sequoia 4.0
[16] database clustering middleware and integrated it with the
OpenNebula cloud infrastructure manager v1.4 [14]. OpenNebula
works with both private and public cloud resources and offers a
single API to manipulate VMs independently of the target
platform. Figure 6 shows an overview of the integration of Dolly
with Sequoia and OpenNebula in the context of the TPC-W
benchmark.

Figure 6. Overview of Dolly integration in Sequoia and
OpenNebula running the TPC-W benchmark.

Client applications send SQL requests to the Sequoia controller
that forwards them to the underlying databases to perform
replication. The SQL commands of update transactions are
recorded with their execution time in a transactional log called
recovery log. The log itself is stored in an embedded database
running within the Sequoia controller. The recovery log can be
replayed to synchronize new or failed replicas. Additionally,
Sequoia has a replica spawning infrastructure with a pluggable
backuper interface that interacts with the recovery log and allows
for database specific implementations of backup and restore
operations. We have implemented a Dolly/OpenNebula backuper
that interacts with OpenNebula to start/stop and clone/snapshot

OpenNebula

TPC-W

load injector

Scheduler

 Recovery Log

Log

table

Dump

table

JMX Management API

Backupers

Dolly

OpenNebula

DB1 DB2 DB3

add/remove replica
snapshot/pause/…

VM1

OS

VM2

OS

VM3

OS

New

replica

VM5

OS

DB3
snapshot

VMclone

OS

Load

balancer

New

replica

VM4

OS

Sequoia controller

predictions

Sequoia driver

admission control

Backup server

or NAS

start/stop/
clone VM

 clone
 clone

Dolly
Capacity Provisioning

Private EC2

write throttling

 SQL

 SQL

 SQL

 SQL

Snapshot scheduler

Actuator

 9

virtual machines to implement the backup and restore
functionality. When a new backup is triggered, a pointer to the
current state of the recovery log is stored with the dump metadata.
When a restore operation is launched, the dump is first restored
and dedicated threads then replay the recovery log (i.e. re-execute
the SQL commands) from the point that was saved in the
metadata. Updates are applied in a serializable order to bring the
new replica in a consistent state with other replicas. The time to
replay is computed by summing the recorded execution time of all
queries to replay. More information about Sequoia internals and
its recovery log can be found in the Sequoia documentation [16].

Dolly takes predictions directly from the TPC-W load injectors
that act as oracles with perfect information. A tunable prediction
window can be used from 1 minute to the entire length of the
benchmark run. The provisioning actions are directly sent to the
Sequoia controller through its administration interface. Dolly
performs admission control directly on the load injectors but it
would typically do this at the web tier level in a multi-tier setup.
The write throttling is achieved by interacting with the Sequoia
scheduler. We have implemented different cost functions to model
our private cloud platform and the Amazon EC2 public cloud.

The private cloud cost functions detailed in pseudo-code in Table
5 optimize the time the resources are used. The longer the
resources are used, the more power they use and the higher the
cost. When the algorithm has to decide which VM to pause, it
selects the hottest machine at that time.

Table 5. Cost function implementation for our private cloud.

Cost function name Implementation
pause_cost(VM, t) return 1/VM->machine->temp
spawn_cost(s, t, d) return d-t
spawn_cost(VM, t, d) return d-t
running_cost(VM,t1,t2) return 1
pause_resume_cost(VM,

t1, t2)
if (t2-t1>VM->pause+VM->resume)

 return 0

else return 2
backup_paused_cost(VM) return backup_time
backup_live_cost(VM, t) return VM->pause + backup_time

+ VM->resume

Table 6 models the cost functions as the real cost the user would
pay for EC2 resource usage. It includes both the compute time for
server instances (charged by the hour at the hour$ rate) and the IO
cost (charged monthly per GB of storage (EBS_storage$) and IOs
are charged per million (EBS_io$)). EBS snapshots are stored on
S3 and are charged monthly per GB of storage (S3_storage$).

Table 6. Cost function implementation for Amazon EC2.

Cost function name Implementation
pause_cost(VM, t) return 60-((t-VM->start)%60)
spawn_cost(s, t, d) comp$=(d-t)/60*hour$

io$=EBS_storage$*s->size +

 EBS_io$*

 (s->restore_io+s->replay_io)

return comp$+io$
spawn_cost(VM, t, d) comp$=(d-t)/60*hour$

io$= EBS_io$*

 (s->resume_io+s->replay_io)

return comp$+io$
running_cost(VM,t1,t2) (t2-t1)/60*hour$;
pause_resume_cost(VM,

t1, t2)
io$= EBS_io$*

 (VM->pause_io+VM->resume_io)

comp$=(60-(VM->stop-VM->start)

 %60)/60*hour$

return io$+ comp$

backup_paused_cost(VM) return S3_storage$*s->size
backup_live_cost(VM, t) return pause_cost(VM, t)$+

 S3_storage$*s->size +

 (VM->stop_io+VM->start_io)*

 EBS_io$

6. Experimental Evaluation

This section first introduces the cloud platforms used for our
experiments. We then present our performance evaluation.

6.1 Cloud Platforms

We conduct experiments on private and public clouds. We use a
private cloud composed of a cluster of Pentium 4 2.8GHz
machines. Each machine is running a CentOS 5.4 Linux
distribution with a Linux kernel version 2.6.18-128.1.10.el5xen,
the Xen 3.3 hypervisor, Java runtime version 1.6.0_04-b12and
MySQL v5.0.45. All machines are interconnected by a Gigabit
Ethernet network.

We use Amazon EC2 as our public cloud. EC2 instances are
created from EBS volumes. We use standard large on-demand
EC2 instances in our experiments. Each EC2 instance has
CloudWatch running on it to monitor the number of writes. The
price of our EC2 instance with CloudWatch is $0.355 per hour.
The price of an EBS volume is $0.10 per allocated GB of data per
month. The cost of doing I/O requests to an EBS volume is $0.10
per million I/O requests. There is a cost of $0.15 per GB per
month associated with the storage of EBS volume snapshots.

Table 7. Operation timings in seconds for a TPC-W benchmark
virtual machine on our private cloud and EC2.

Operation Private Cloud Public Cloud (EC2)

start VM 42s 220s

pause VM 26s 30s

resume VM 42s 30s

backup (stop/clone) 150s 320s

restore (clone/start) 165s 220s

wmax 149 writes/sec 197 writes/sec

Avg IOs per write 15 13

We build a 4GB VM image of the TPC-W benchmark for both
cloud platforms. We report our measurements of the various VM
management and cloning operations in Table 7. We measure the
maximum write throughput of a single replica (wmax) obtained by
running only write transactions of the TPC-W workload on a
standalone database. The average number of IOs per write
transaction is calculated by running iostat before and after the
wmax run.

6.2 VM Cloning vs Database Backup/Restore

VM cloning is an alternative mechanism for replicating content
when compared to the traditional database-specific backup-restore
mechanism. In this section, we compare the copy overheads of the
two approaches.

Table 8 shows the time to copy various databases using the
database native backup/restore tool (e.g. mysqldump, pg_dump)
versus VM cloning. The RUBiS benchmark database [3] is tested
with 3 configurations on MySQL using the InnoDB engine:
without constraint or index (-c-i), with integrity constraints and
basic indexes (+c+bi) and with constraints and full text indexes
(+c+fi). TPC-W and TPC-H [19] databases are stored in a
PostgreSQL RDBMS. We also experiment with two virtual
machine image sizes (4 and 16GB) where we store both the
operating system and the database within its content.

Indexes significantly increase the database footprint on disk. We
observe from the RUBiS results that integrity constraints checks
as well as index building can increase database backup/restore

 10

time by a factor of more than 7 for the exact same database
content. Not only do the database schema and backup tool
configurations affect timings, different database engines yield
very different results for databases with a similar size on disk as
shown on Figure 7. We observe that large or complex databases
can take more than 1 hour to replicate.

Table 8. Backup/restore and VM cloning time in seconds for
various standard benchmark databases.

Database
DB size
on disk

DB
Backup
Restore

Dolly
4GB VM
cloning

Dolly
16GB VM

cloning

RUBiS –c–i 1022MB 843s 281s 899s

RUBiS +c+bi 1.4GB 5761s 282s 900s

RUBiS +c+fi 1.5GB 6017s 280s 900s

TPC-W 684MB 288s 275s 905s

TPC-H 1GB 1.8GB 1477s 271s 918s

TPC-H 10GB 12GB 5573s n/a 911s

In contrast, VM cloning performs a filesystem level copy without
interpreting database objects, thus it offers a constant time
regardless of the database complexity or engine used. The time
only depends on the VM image size on disk (280s for a 4GB
image and about 900s for a 16GB image). Consequently, since the
VM disk size is fixed a priori, VM cloning makes it easy to
predict database backup/restore time incurred when spawning a
new replica—a crucial pre-requisite for database provisioning.
Additionally VM cloning captures the entire OS/database
configuration and settings preventing any error in reproducing
these settings on the new replica machine.

Figure 7. Time breakdown for cloning a database with Dolly and
MySQL backup/restore tools with the MyISAM and InnoDB
engines using the RUBiS benchmark database with various

constraints and indices.

6.3 Provisioning Evaluation

We experiment with TPC-W, an eCommerce benchmark from the
Transaction Processing Council [19] that emulates an online
bookstore. We use the ObjectWeb implementation of the TPC-W
benchmark [17]. The setup is similar to the one depicted in Figure
6 with load injectors providing a 2 hour prediction window. The
web tier (not shown on Figure 6) is statically provisioned with
enough servers for the length of the experiment.

We compare the provisioning decisions of Dolly for the private
and public clouds with traditional provisioning techniques given
the workload and initial conditions defined in section 6.3.1.

6.3.1 Workload Description

We have generated a custom mix of interactions to create the
workload depicted at the top of Figure 8. We generate a read-only
request mix by using the TPC-W browsing mix workload and
removing its few write interactions. We use httperf to create the
desired number of clients that send these read-only interactions.
The write interactions are generated using the customer
registration servlet of TPCW. Another set of httperf clients
generate these write-only interactions.

We use the model described in [9] to determine the capacity
requirements shown in Figure 8. The initial capacity demand at
t=0 is 4 replicas (middle graph) and the write throughput is 20%
of the maximum write throughput (bottom graph). A snapshot s0
is also available at time t0. After 10 minutes the number of
replicas needed decreases from 4 to 3. We denote this deadline by
d1. The number of replicas needed decreases further from 3 to 2 at
d2=20 minutes. The capacity demand increases sharply from 2 to 5
replicas at d3=80 minutes, then drops to 2 at d4=90 minutes and
increases up to 6 replicas at d5=100 minutes. The number of
writes remains constant to 0.2 times the maximum write
throughput for one hour with a 10 minute read-only workload
starting at d2. After that hour, the write throughput is 0 until d3
with a write surge at 50% of the maximum write throughput. The
write peak continues for 10 minutes and the write throughput
drops to 0 at d4.

Figure 8. TPC-W workload, predicted capacity requirements and
write workload.

6.3.2 Provisioning results

We compare Dolly’s performance with two traditional
provisioning techniques: reactive provisioning and
overprovisioning. These techniques behave similarly on the
private and public clouds.

Reactive provisioning does not use any prediction and just reacts
to the current capacity demand. When reactive provisioning is
used, database snapshots are generated at fixed time intervals. We
use intervals of 15 minutes (Reactive15m), 1 hour (Reactive1h)
and 2 hours (Reactive2h), generating 7, 1 and 0 snapshots
respectively during the experiment.

The overprovisioning configuration (Overpro6) uses a constant
set of 6 nodes. As for reactive provisioning, snapshots are
generated periodically. We choose to only generate 1 snapshot
during the experiment.

 11

Figure 9. Capacity made available by each provisioning algorithm compared to the required capacity and the total capacity actually used.

We run Dolly with three prediction windows of 10 minutes, 30
minutes and 2 hours. Dolly uses the cost functions presented in
section 5 for the private and public clouds. The performance of
the different algorithms is summarized in Table 9. The cost for the
private cloud represents the cumulative machine uptime (6
machines up for 5 minutes accounts for 30 minutes). The cost for
the public cloud (Amazon EC2) is the real cost in $USD. The
second metric used is missing replica minute (MRM) that
measures capacity underprovisioning (i.e. SLA violations). 1
MRM corresponds to a missing capacity of 1 replica for 1 minute
(5 replicas missing for 2 minutes accounts for 10MRM).

Table 9. Provisioning algorithm performance for private and
public clouds in terms of cost and missing replica minute (MRM).

Provisioning
algorithm

Private Cloud Public Cloud (EC2)

Cost (time) MRM Cost ($) MRM

Reactive15m 381m42s 17.5 18.29 27.2

Reactive1h 360m30s 25.8 5.00 33.7

Reactive2h 410m 42.1 4.61 41.5

Overpro6 720m 0 8.39 0

Dolly10m 381m54s 0 7.16 0

Dolly30m 352m 0 3.73 0

Dolly2h 352m 0 3.73 0

The results show that reactive provisioning is not able to properly
provision the system with missing capacity ranging from 23.2 to
44.2 missing replica minute. Snapshotting more often reduces the
time to spawn new replicas by restore and replay but capacity is
missing during the spawning operations.

Overprovisioning (Overpro6) always provides an adequate
capacity but at a significantly larger cost on each cloud platform.
In contrast, Dolly uses much less resources while still providing
the required capacity. A 10 minute prediction window (Dolly10m)
requires more snapshots to be able to react to any new capacity
demand at the end of the short prediction window. A 30 minute
prediction window (Dolly30m) is enough to provide an optimal

provisioning using less than half of the resources of the
overprovisioned configuration.

Figure 9 shows in more detail the behavior of each algorithm.
When reactive provisioning is used, additional capacity is used to
spawn a new replica from the latest snapshot so that a new
snapshot can be generated. When capacity needs to be increased,
the system remains underprovisioned during the time replicas are
spawned. The older the snapshot the longer it takes to spawn new
replicas. In the Reactive2h case, replicas spawning starting at t=80
completes only 17 minutes later, leaving the system with only 2
available replicas to serve requests during the first peak period.

The Overpro6 configuration constantly provides 6 replicas except
for when the snapshot is generated where a node is briefly paused.
The large shaded area shows the amount of wasted resources.

Dolly with a 10 minute prediction window (Dolly10m) behaves
similarly on both cloud platforms. As the prevision window slides
the time to restore and replay from the latest snapshot exceeds the
prediction window size. This is why Dolly spawns new replicas to
generate new snapshots at deadlines s1 and s2. While new replicas
are spawned from s1 during the first capacity increase, the write
spike quickly triggers an additional replica to generate s2. Four
replicas are paused at the end of the first peak and resumed for the
second peak (no replay time since no write occurred during that
paused time). An additional replica is quickly spawned from s2.

With a 30 minute or longer prevision window (Dolly30m and
Dolly2h), decisions change between the private and the public
cloud according to the cost functions. While less machine time is
used on the private cloud by generating new snapshots from an
additional replica online (s1) or from a paused replica (s2), the
storage cost of a new snapshot dominates the IO cost of replay for
EC2. Therefore all replicas are always spawned from the original
s0 snapshot in the public cloud. Instances are also not stopped
between the two peaks as instances are paid for a full hour,
pausing and restarting them 10 minutes later costs more than
letting them run.

In summary, we have shown that Dolly with a prediction window
as short as 30 minutes is able to provide optimal resource
utilization (according to administrator defined cost functions)
while always providing the required capacity.

replica spawning

triggered here

replicas available

snapshotting

cheaper to leave instances online

snapshotting

snapshotting

s1 s1 s2 s2 s1 s2

 12

7. Related Work

Much of the prior work on dynamic provisioning [20], [21], [22],
[4] has focused on dynamic provisioning of the front tiers of web
applications. In this work we focus on the database tier that differs
from other tiers due to its large dynamic state. Commercial
solutions such as Oracle RAC [13] use a shared disk approach to
avoid the state replication problem. The use of in-memory
databases on top of a shared storage has also been considered
[12]. Our work focuses on cloud environments where a shared
disk approach cannot typically be deployed.

Amazon Relational Database Service (RDS) [2] works with
Amazon Auto Scaling [1] to provide reactive provisioning of
asynchronously replicated (i.e. master/slave) MySQL databases
based on static thresholds. Microsoft in its Azure PaaS (Platform
as a Service) cloud offering provides built-in replication in the
lower layer of its platform but hides it to the user [15].
Provisioning could be enhanced on both platform using Dolly.

The few papers related to dynamic provisioning of databases
usually focus on workload prediction without modeling the time
to spawn new replicas [8]. Dolly can work with any load predictor
and provisions database replicas accordingly by predicting VM
cloning and replica resynchronization time. The problem of re-
synchronizing database replicas in a shared nothing environment
has been described in [17]. However, the proposed technique only
relies on log replay and does not exploit snapshotting as a way to
bring up new replicas. Even in a more recent work [10], state
synchronization time is based on fixed estimates for replay. We
have shown that using virtualization, we are able to snapshot
databases via VM cloning and predict state replication time
accurately.

8. Conclusion

Database provisioning is a challenging problem due to the need to
replicate and synchronize disk state. Since modern data centers
and cloud platforms employ a virtualized architecture, we
proposed a new database replica spawning technique that
leverages virtual machine cloning. We argued that VM cloning
offers a replication time that depends solely on the VM disk size
and is independent of the database size, schema complexity and
database engine. We proposed models to accurately estimate
replica spawning time and analyzed the tradeoffs between
capacity provisioning and database state snapshotting. To the best
of our knowledge, Dolly is the first database provisioning system
that can be adapted to the specifics of various cloud platforms via
administrator-defined cost functions.

We implemented Dolly and integrated it with a commercial-grade
open source database clustering middleware. We proposed
different cost functions to optimize resource usage in a private
cloud and to minimize cost for the Amazon EC2 public cloud. We
evaluated our prototype with a TPC-W e-commerce workload and
demonstrated the benefits of an automated database provisioning
system for the cloud, with optimized solutions adapted to different
cloud platform specifics. We plan to release Dolly as open source
software and hope that it will facilitate replicated database
deployments in virtualized environments such as clouds.

Acknowledgement

We would like to thank Steve Dropsho for early contributions to
this work. This research was supported in part by NSF grants

CNS-0834243, CNS-0720616, CNS-0916972, CNS-0855128,
and a gift from NEC.

9. References

[1] Amazon Auto Scaling - http://aws.amazon.com/autoscaling/

[2] Amazon RDS - http://aws.amazon.com/rds/

[3] C. Amza, E. Cecchet, Anupam Chanda, Alan L. Cox, S. Elnikety,

R. Gil, J. Marguerite, K. Rajamani, and W. Zwaenepoel –

Specification and implementation of dynamic Web site

benchmarks – WWC, 2002.

[4] M. N. Bennani and D. A. Menasce – Resource allocation for

autonomic data centers using analytic performance models –

ICAC ’05, Washington, DC, USA, 2005.

[5] J. Blancet – Snapshots in Xen – Online FAQ, https://zagnut.storeit

offsite.com/home/jim.blancet/FAQ/Snapshots%20in%20xen

[6] E. Cecchet, R. Singh, U. Sharma and P. Shenoy – Dolly:

Virtualization-driven Database Provisioning for the Cloud –

UMass Technical Report UM-CS-2010-006.

[7] E. Cecchet, G. Candea and A. Ailamaki – Middleware-based

Database Replication: The Gaps between Theory and Practice. –

ACM SIGMOD, June 10-12, 2008

[8] J. Chen, G.Soundararajan, C.Amza – Autonomic Provisioning of

Backend Databases in Dynamic Content Web Servers – ICAC '06,

June 2006.

[9] S. Elnikety, S. Dropsho, E. Cecchet and W. Zwaenepoel –

Predicting Replicated Database Scalability from Standalone

Database Profiling – EuroSys, April 2009.

[10] S. Ghanbari, G. Soundararajan, J. Chen, and C. Amza – Adaptive

Learning of Metric Correlations for Temperature-Aware Database

Provisioning – ICAC, June 2007.

[11] J. Hellerstein, F. Zhang, and P. Shahabuddin – An Approach to

Predictive Detection for Service Management – Proceedings of the

12th Conference on Systems and Network Management, 1999.

[12] K. Manassiev and C. Amza – Scaling and Continuous Availability

in Database Server Clusters through Multiversion Replication –

DSN 2007, June 2007.

[13] Oracle – Oracle Real Application Clusters 11g – Oracle Technical

White Paper, April 2007.

[14] OpenNebula project. http://opennebula.org/

[15] M. Otey – SQL Server vs. SQL Azure: Where SQL Azure is Limited

- SQL Server Magazine, August 2010.

[16] Sequoia Project. http://sourceforge.net/projects/sequoiadb/

[17] G. Soundararajan and C. Amza – Online data migration for

autonomic provisioning of databases in dynamic content web

servers – 2005 Conference of the Centre For Advanced Studies on

Collaborative Research, Toronto, October 2005.

[18] TPC-W Benchmark, ObjectWeb implementation,

http://jmob.objectweb.org/tpcw.html.

[19] Transaction Processing Council. http://www.tpc.org/.

[20] B. Urgaonkar, P. Shenoy, A. Chandra, and P. Goyal – Dynamic

Provisioning for Multi-tier Internet Applications – ICAC-05,

Seattle, June 2005.

[21] D. Villela, P. Pradhan, and D. Rubenstein – Provisioning Servers

in the Application Tier for E-commerce Systems – IWQOS 2004,

June 2004.

[22] Q. Zhang, L. Cherkasova, and E. Smirni – A regression based

analytic model for dynamic resource provisioning of multi-tier

applications – ICAC ’07, Washington, DC, 2007.

